BibTex Citation Data :
@article{J.Gauss6455, author = {Ira Sari and Triastuti Wuryandari and Hasbi Yasin}, title = {PREDIKSI DATA HARGA SAHAM HARIAN MENGGUNAKAN FEED FORWARD NEURAL NETWORKS (FFNN) DENGAN PELATIHAN ALGORITMA GENETIKA (Studi Kasus pada Harga Saham Harian PT. XL Axiata Tbk)}, journal = {Jurnal Gaussian}, volume = {3}, number = {3}, year = {2014}, keywords = {prediction of daily stock price data; neural networks; feed forward neural network; genetic algorithm}, abstract = { Artificial neural network (ANN) or Neural Network (NN) is an information processing system that has characteristics similar to biological neural networks. One of the ANN models have network is quite simple and can be applied to time series data prediction is Feed Forward Neural Networks (FFNN). In general, FFNN trained using Backpropagation algorithm to obtain weights, but performance will decrease and trapped in a local minimum when applied to data that have great complexity like financial data. The solution to this problem is to train FFNN using Genetic Algorithm (GA). GA is a search algorithm that is based on the mechanism of natural selection and genetics to determine the global optimum. Training FFNN using GA is a good solution but the problem is how to understand the workings of FFNN training using the GA, the determination of the combination of the probability of crossover (), number of populations, number of generations, and the size of the tournament (k) on the AG to produce predictive value approaching actual value. One possible option is to use the technique of trial-end-error by experimenting for some combination of these four parameters. Of the 64 times the application of the AG test results to train FFNN models on daily stock price data PT. XL Axiata Tbk obtained results are sufficiently accurate predictions indicated by the proximity of the target to the output of the crossover probability () 0.8, a population of 50, the number of generations 20000 and tournament size of 4 produces the testing RMSE 107.4769. }, issn = {2339-2541}, pages = {441--450} doi = {10.14710/j.gauss.3.3.441-450}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/6455} }
Refworks Citation Data :
Artificial neural network (ANN) or Neural Network (NN) is an information processing system that has characteristics similar to biological neural networks. One of the ANN models have network is quite simple and can be applied to time series data prediction is Feed Forward Neural Networks (FFNN). In general, FFNN trained using Backpropagation algorithm to obtain weights, but performance will decrease and trapped in a local minimum when applied to data that have great complexity like financial data. The solution to this problem is to train FFNN using Genetic Algorithm (GA). GA is a search algorithm that is based on the mechanism of natural selection and genetics to determine the global optimum. Training FFNN using GA is a good solution but the problem is how to understand the workings of FFNN training using the GA, the determination of the combination of the probability of crossover (), number of populations, number of generations, and the size of the tournament (k) on the AG to produce predictive value approaching actual value. One possible option is to use the technique of trial-end-error by experimenting for some combination of these four parameters. Of the 64 times the application of the AG test results to train FFNN models on daily stock price data PT. XL Axiata Tbk obtained results are sufficiently accurate predictions indicated by the proximity of the target to the output of the crossover probability () 0.8, a population of 50, the number of generations 20000 and tournament size of 4 produces the testing RMSE 107.4769.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics