skip to main content

AKURASI KINERJA METODE HYBRID GEOMETRIC BROWNIAN MOTION-KALMAN FILTER DALAM PERAMALAN HARGA SAHAM INDONESIA

*Aldan Maulana Hamdani  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Sukolilo, Surabaya, Jawa Timur, Indonesia 60111, Indonesia
Nur Iriawan  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Keputih, Kecamatan Sukolilo, Surabaya, Jawa Timur 60111, Indonesia
Irhamah Irhamah  -  Department of Statistics, Institut Teknologi Sepuluh Nopember, Jalan Raya ITS, Keputih, Kecamatan Sukolilo, Surabaya, Jawa Timur 60111, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This study aims to analyse the performance of a stock price forecasting model based on Geometric Brownian Motion (GBM) modified with the Kalman Filter (KF) approach. The GBM model is used to represent the basic behaviour of stock price movements, which are stochastic in nature, while the Kalman Filter plays a role in estimating model parameters based on actual observation data. This study uses closing price data for PT. Aneka Tambang Tbk. (ANTM) shares. The results of this study show the accuracy level using Mean Absolute Error Percentage (MAPE) in the GBM-KF hybrid model and are in the best fitting condition. For ANTM shares, it is 5.72% (GBM) and 3.83% (Hybrid GBM-KF). The GBM-KF hybrid model has proven to be effective in minimising prediction errors and capturing changes in market trends and volatility that cannot be explained by the classic GBM model. Furthermore, this study highlights that integrating Kalman Filter into GBM improves the model’s adaptability to dynamic market conditions, allowing for real-time parameter estimation and enhanced predictive stability. The findings suggest that the GBM-KF framework can serve as a robust tool for financial forecasting, particularly in volatile markets where traditional models tend to underperform.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (491KB)    Indexing metadata
Keywords: GBM; Hybrid GBM-KF; Stock; Market Volatility

Article Metrics:

  1. Barua, M., Kumar, T., Raj, K., Roy, A.M., 2024. Comparative Analysis of Deep Learning Models for Stock Price Prediction in the Indian Market. FinTech 3, 551–568. https://doi.org/10.3390/fintech3040029
  2. Brătian, V., Acu, A.-M., Mihaiu, D.M., Șerban, R.-A., 2022. Geometric Brownian Motion (GBM) of Stock Indexes and Financial Market Uncertainty in the Context of Non-Crisis and Financial Crisis Scenarios. Mathematics 10, 309. https://doi.org/10.3390/
  3. math10030309
  4. Dar, G.F., Padi, T.R., Rekha, S., Dar, Q.F., 2022. Stochastic Modeling for the Analysis and Forecasting of Stock Market Trend using Hidden Markov Model. Asian J. Probab. Stat. 43–56. https://doi.org/10.9734/ajpas/2022/v18i130436
  5. Fang, C.-Y., Liu, Y., Shi, Z.-Y., Chen, C., 2023. Closed-Form Expression of Geometric Brownian Motion with Regime-Switching and Its Applications to European Option Pricing. Symmetry 15, 575. https://doi.org/10.3390/sym15030575
  6. Hamdani, A.M., Widhiatmoko, F., Fitri, S., 2025. Perbandingan Akurasi Metode Auto-regressive Integrated Moving Average dan Geometric Brownian Motion untuk Peramalan Harga Saham Indonesia. Euler J. Ilm. Mat. Sains Dan Teknol. 13, 14–20. https://doi.org/10.37905/euler.v13i1.30760
  7. Harvey, D., 1989. From Managerialism to Entrepreneurialism: The Transformation in Ur-ban Governance in Late Capitalism. Geogr. Ann. Ser. B Hum. Geogr. 71, 3–17. https://doi.org/10.2307/490503
  8. Hasan, N., Pelleng, F.A.O., Mangindaan, J.V., 2019. Analisis Capital Asset Pricing Model (CAPM) Sebagai Dasar Pengambilan Keputusan Berinvestasi Saham (Studi pada Indeks Bisnis-27 di Bursa Efek Indonesia). J. Adm. BISNIS 8, 36. https://doi.org/10.35797/jab.8.1.2019.23498.36-43
  9. Hasibuan, R.N., Muda, I., Bukit, R.Br., 2023. Analisis pengambilan keputusan investasi saham dengan pendekatan price earning ratio (PER) dan capital asset pricing mod-el (CAMP). JPPI J. Penelit. Pendidik. Indones. 9, 703. https://doi.org/10.29210/
  10. Maricar, M.A., 2019. Analisa Perbandingan Nilai Akurasi Moving Average dan Exponen-tial Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. J. Sis-tem dan Informatika. 13, 36-45
  11. Martha, S., Rizki, S.W., 2018. Simulasi pergerakan harga saham menggunakan pendekatan metode monte carlo. J. Untan 7, 119-126
  12. Maulana, D.A., Sofro, A., Ariyanto, D., Romadhonia, R.W., Oktaviarina, A., Purnama, M.D., 2025. Stock price prediction and simulation using geometric brownian mo-tion-kalman filter: a comparison between kalman filter algorithms. BAREKENG J. Ilmu Mat. Dan Terap. 19, 97–106. https://doi.org/10.30598/barekengvol19iss1pp97-106
  13. Mehrdoust, F., Noorani, I., Khavari, M., 2021. Efficient estimation of Markov-switching model with application in stock price classification. J. Math. Model. Finance 1. https://doi.org/10.22054/jmmf.2021.13843
  14. Nosrati, K., Belikov, J., Tepljakov, A., Petlenkov, E., 2023. Extended fractional singular kalman filter. Appl. Math. Comput. 448, 127950. https://doi.org/10.1016/
  15. j.amc.2023.127950
  16. Otoritas Jasa Keuangan [Saham], 2025. URL https://ojk.go.id/id/Default.aspx (accessed 10.21.25)
  17. PT Aneka Tambang Tbk [Profil], 2025. URL https://www.antam.com/en (accessed 10.21.25)
  18. PT Bursa Efek Indonesia [Pasar Saham], 2025. URL https://www.idx.co.id/ (accessed 10.21.25)
  19. Putri, D.M., Hasibuan, L.H., 2020. Penerapan gerak brown geometrik pada data saham PT. ANTM. MAp Math. Appl. J. 2, 1–10. https://doi.org/10.15548/map.v2i2.2258
  20. Ruppert, D., Matteson, D.S., 2015. Statistics and Data Analysis for Financial Engineering: with R examples, Springer Texts in Statistics. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-2614-5
  21. Sinha, A., 2024. Daily and Weekly Geometric Brownian Motion Stock Index Forecasts. J. Risk Financ. Manag. 17, 434. https://doi.org/10.3390/jrfm17100434
  22. Sulistyawati, W., Trinuryono, S., 2022. Analisis (deskriptif kuantitatif) motivasi belajar siswa dengan model blended learning di masa pandemi covid19. Kadikma 13, 68-73
  23. Syarifudin, A.N.A., Merdekawati, D.A., Apriliani, E., 2018. Perbandingan Metode Kal-man Filter, Extended Kalman Filter, dan Ensemble Kalman Filter pada Model Penyebaran Virus HIV/AIDS. J. Mathematics and Its Applications 15, 17-29

Last update:

No citation recorded.

Last update:

No citation recorded.