skip to main content

Pemilihan Parameter Osilasi Optimal Menggunakan Generalized Cross-Validation (GCV) pada Regresi Nonparametrik Deret Fourier

*Hasna Faridah Dhiya Ul Haq  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
I Nyoman Budiantara  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No 175, Keputih, Surabaya, Indonesia, Indonesia
Jerry Dwi Trijoyo Purnomo  -  Departemen Statistika, Institut Teknologi Sepuluh Nopember, Jl. Teknik Mesin No 175, Keputih, Surabaya, Indonesia, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
This research focuses on determining the optimal oscillation parameter in a Fourier series nonparametric regression model using the Generalized Cross-Validation (GCV) method to analyze factors influencing poverty in Central Java Province in 2024. The response variable is the percentage of the poor population, with Gross Regional Domestic Product (GRDP), Average Length of Schooling (ALS), and Open Unemployment Rate (OUR) as predictor variables. The optimal model is selected based on the minimum GCV value, with performance evaluated using MSE and . The results show that the minimum GCV is achieved at one oscillation, yielding an MSE of 4.545 and an  of 0.546, indicating that 54.6% poverty variation is explained by the predictors. Simultaneous testing shows a significant joint effect of predictors, while partial testing indicates no individual significance. Thus, GCV effectively determines the optimal oscillation parameter in Fourier series nonparametric regression for poverty analysis.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
COPYRIGHT TRANSFER AGREEMENT
Subject
Type Research Instrument
  Download (164KB)    Indexing metadata
Keywords: Fourier Series; Generalized Cross-Validation (GCV); Nonparametric Regression; Poverty

Article Metrics:

  1. Amrullah M. N. & Hariksa Amalia S. (2022) Comparison of Generalized Cross Validation (GCV) Methods with Cross Validation (CV) to Determine Optimal Knots in Fourier Series Nonparametric Regression (Case Study: Poverty Rate in North Sumatra Province). Jurnal Litbang Edusaintech. 3(1):1-10. http://journal.pwmjateng.com/index.php/jle DOI: 10.51402/jle.v3i1.5
  2. BPS. (2011). Penjelasan Data Kemiskinan. Indonesia. Badan Pusat Statistik
  3. BPS. (2024). Statistik Indonesia 2024. Indonesia. Badan Pusat Statistik
  4. Eubank, R. L. (1999) Nonparametric Regression and Spline Smoothing 2nd Edition. Texas. SRS Press
  5. Fernandes, A. A. R. & Solimun. (2021) Analisis Regresi dalam Pendekatan Fleksibel: Ilustrasi dengan Paket Program R. Malang. Universitas Brawijaya Press
  6. Laswinia, V. D. & Chamid, M. S. (2016) Analisis Pola Hubungan Persentase Penduduk Miskin dengan Faktor Lingkungan, Ekonomi, dan Sosial di Indonesia Menggunakan Regresi Spasial. Jurnal Sains dan Seni ITS. 5(2):235-240
  7. Ni’matuzzahroh L, & Dani A. T. R. (2024) Nonparametric Regression Modeling with Multivariable Fourier Series Estimator on Average Length of Schooling in Central Java in 2023. Inferensi. 7(2):73-81. DOI: 10.12962/j27213862.v7i2.20219
  8. Nurcahyani, E. P. (2023) Pemodelan Regresi Nonparametrik dengan Pendekatan Deret Fourier Pada Tingkat Pengangguran Terbuka di Indonesia. Pontianak: Universitas Tanjungpura
  9. Pynanjung P. A, Agustinus E, Junaidi J, Burhansyah R, & Oktoriana S. (2021) Poverty in the Indonesia-Malaysia border province (case study in West Kalimantan Province). Jurnal Perspektif Pembiayaan dan Pembangunan Daerah. 9(5):401-412. DOI: 10.22437/ppd.v9i5.12760
  10. Saputro R. H. & Arif M. (2024) What factors affecting poverty rates in Indonesia? Empirical evidence from West Sumatera. Journal of Enterprise and Development (JED). 6(1):248-258
  11. Sari, E. P. & Novianti. (2024) Pengaruh PDRB terhadap Kemiskinan di Kalimantan Barat Tahun 2017-2022. Ekodestinasi. 2(1):36–56
  12. Sari, R. S. & Budiantara, I. N. (2012) Pemodelan Pengangguran Terbuka di Jawa Timur dengan Menggunakan Pendekatan Regresi Spline Multivariabel. Jurnal Sains dan Seni ITS. 1(1):236-241
  13. Suganda, A., Ramadhini, M., Harahap, P., Nugrahadi, E., & Gultom, G. (2024) The Effect of HDI and Unemployment Rate on Poverty in the Riau Islands. Equity: Jurnal Ekonomi. 8(1):58-65. DOI: 10.33019/equity.v%vi%i.308
  14. Utami T. W, Haris M. A, Prahutama A, & Purnomo E. A. (2020) Optimal knot selection in spline regression using unbiased risk and generalized cross validation methods. In: Journal of Physics: Conference Series. Institute of Physics Publishing
  15. Wahba G. (1990) Spline Models for Observational Data. Philadelphia. University of Wisconsin at Madison
  16. Wu, H. & Zhang, J. T. (2006) Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches. New York. John Wiley & Sons

Last update:

No citation recorded.

Last update:

No citation recorded.