skip to main content

EVALUASI MODEL KLASIFIKASI DALAM DETEKSI PENIPUAN TRANSAKSI: STUDI KASUS PADA DATA TIDAK SEIMBANG

*Jefita Resti Sari  -  Program Studi Statistika dan Sains Data, Sekolah Sains Data, Matematika dan Informatika, Institut Pertanian Bogor, Indonesia
Kusman Sadik  -  Program Studi Statistika dan Sains Data, Sekolah Sains Data, Matematika, dan Informatika, Institut Pertanian Bogor, Indonesia
Agus M. Soleh  -  Program Studi Statistika dan Sains Data, Sekolah Sains Data, Matematika, dan Informatika, Institut Pertanian Bogor, Indonesia
Cici Suhaeni  -  Program Studi Statistika dan Sains Data, Sekolah Sains Data, Matematika, dan Informatika, Institut Pertanian Bogor, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The rise in digital transactions increases the risk of credit card fraud, highlighting the need for a smart and accurate detection system. This study aims to develop a classification model that can effectively detect fraudulent transactions, despite data imbalance challenges. Data processing involves the use of the SMOTE technique to improve the representation of minority classes and Optuna for hyperparameter tuning. Three machine learning models are applied: Logistic Regression, Random Forest, and XGBoost. Model performance is evaluated using precision, recall, f1-score, and ROC-AUC. The results show that Random Forest achieves the best performance, with a precision of 0.91, recall of 0.74, and f1-score of 0.82. Logistic Regression achieves high recall but very low precision, while XGBoost produces a competitive AUC but a lower f1-score than Random Forest. This research highlights the importance of algorithm selection, data balancing with SMOTE, and parameter tuning to build an effective and adaptive fraud detection system for imbalanced data
Fulltext View|Download
Keywords: Anomly;Credit Card; SMOTE; Random Forest

Article Metrics:

  1. Akiba, Takuya, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. “Optuna: A Next-Generation Hyperparameter Optimization Framework.” Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 2623–31. doi: 10.1145/3292500.3330701
  2. Alamri, Maram, and Mourad Ykhlef. 2024. “Hybrid Feature Engineering Based on Customer Spending Behavior for Credit Card Anomaly and Fraud Detection.” Electronics (Switzerland) 13(20). doi: 10.3390/electronics13203978
  3. Carcillo, F., Dal Pozzolo, A. Dal Pozzolo, Y.-A Le Borgne, O. Caelan, Y Mazzer, and G. Bontempi. 2019. “SCARFF: A Scalable Framework for Streaming Credit Card Fraud Detection with Spark.” Information Fusion: 297–308
  4. Carcillo, Fabrizio, Yann-Ael Le Borgne, Olivier Caelan, Yacine Kessaci, Oble Frederic, and Gianluca Bontempi. 2021. “Combining Unsupervised and Supervised Learning in Credit Card Fraud Detection.” Information Sciences 557: 317–31
  5. Chawla, Nitesh V, Kevin W Bowyer, and Lawrence O Hall. 2002. “SMOTE : Synthetic Minority Over-Sampling Technique.” 16: 321–57
  6. Correa Bahnsen, Alejandro, Djamila Aouada, Aleksandar Stojanovic, and Björn Ottersten. 2016. “Feature Engineering Strategies for Credit Card Fraud Detection.” Expert Systems with Applications 51: 134–42. doi: 10.1016/j.eswa.2015.12.030
  7. Hosmer, David W., Stanley Lemeshow, and Rodney X. Sturdivant. 2013. Applied Logistic Regression
  8. Jiang, Shanshan, Ruiting Dong, Jie Wang, and Min Xia. 2023. “Credit Card Fraud Detection Based on Unsupervised Attentional Anomaly Detection Network.” Systems 11(6): 1–14. doi: 10.3390/systems11060305
  9. Kotsiantis, Sotiris, and Dimitris Kanellopoulos. 2006. “Association Rules Mining: A Recent Overview.” Science 32(1): 71–82
  10. Mbakwe, Amarachi Blessing, and Sikiru Ademola Adewale. 2022. “MACHINE LEARNING ALGORITHMS FOR CREDIT CARD FRAUD DETECTION Amarachi.” International Journal of Computer Science, Engineering and Applications 12(3/4/5/6): 01–13. doi: 10.5121/mlaij.2022.9402
  11. Purwa, Taly. 2019. “Perbandingan Metode Regresi Logistik Dan Random Forest Untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin Di Kabupaten Karangasem, Bali Tahun 2017).” Jurnal Matematika, Statistika dan Komputasi 16(1): 58. doi: 10.20956/jmsk.v16i1.6494
  12. Ronny Susetyoko, Wiratmoko Yuwono, and Elly Purwantini. 2022. “Model Klasifikasi Pada Seleksi Mahasiswa Baru Penerima KIP Kuliah Menggunakan Regresi Logistik Biner.” Jurnal Informatika Polinema 8(4): 31–40. doi: 10.33795/jip.v8i4.914
  13. Science, Computer, Varun Chellapilla, Sravya Chikkam, and Jayanth Sriram Melinati. 2024. “CREDIT CARD FRAUD DETECTION USING A STACKING ENSEMBLE APPROACH WITH LSTM AND RANDOM FOREST.” (April): 16–19
  14. Syeeda, P., and A. Mohanty. 2024. “Fraud Detection in Financial Transactions Using Machine Learning.” International Journal of Scientific Research & Engineering Trends 10(5)
  15. Witten, I. H., Eibe. Frank, Mark A. Hall, and Christopher J. Pal. 2017. Data mining - Practical machine learning tools and techniques CHAPTER 10. Deep Learning

Last update:

No citation recorded.

Last update:

No citation recorded.