skip to main content

COMPARATIVE ANALYSIS OF K-MEANS, K-MEDOIDS, AND FUZZY C-MEANS FOR CLUSTERING PROVINCES IN INDONESIA BASED ON RICE PRODUCTION IN 2024

*Ilham Mujahidin  -  Department of Statistics, Faculty of Science and Technology, Universitas Terbuka, Indonesia
Siti Hadijah Hasanah  -  Department of Statistics, Faculty of Science and Technology, Universitas Terbuka, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Rice is one of the main commodities in Indonesia's agricultural sector that plays a crucial role in maintaining national food security. This study aims to cluster 38 provinces in Indonesia based on the similarity of rice production in order to understand the spatial variation of agricultural performance in different provinces. In this analysis, three clustering methods were used, namely K-Means, K-Medoids, and Fuzzy C-Means, by considering two main variables: the area of harvest and the amount of rice production in 2024, whose data were sourced from the Central Bureau of Statistics. Evaluation of cluster quality was conducted using the Davies-Bouldin Index (DBI). The results showed that the K-Means method produced the most optimal clustering with the lowest DBI value of 0.276 at the number of clusters , compared to K-Medoids (0.279 at ) and Fuzzy C-Means (0.285 at ). The clusters formed show a clear separation between provinces with high and low production levels. Provinces with high agricultural intensification and a large contribution to production belong to the main cluster, while areas with limited resources and low production form a separate cluster. Several other clusters reflect medium to high production characteristics with varying development potential. This finding reflects the diversity of agricultural conditions influenced by infrastructure, intensification, and geographical and climatic factors.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Data Analysis
Subject
Type Research Instrument
  Download (51KB)    Indexing metadata
Keywords: Clustering; K-Means; K-Medoids; Fuzzy C-Means; Davies-Bouldin Index

Article Metrics:

  1. Andini, R., Aminisari, S. T., Husin, V. A. F., & Jambak, M. I. (2024). Perbandingan algoritma K-Means dan K-Medoids untuk klasterisasi produksi telur ras ayam kampung di Provinsi Sumatera Selatan. JATI (Jurnal Mahasiswa Teknik Informatika), 8(3), 3910–3915
  2. Badan Pusat Statistik. (2025). Ringkasan Eksekutif luas Panen, dan Produksi Padi di Indonesia 2024 (Angka Tetap). Badan Pusat Statistik
  3. Fathurrahman, Harini, S., & Kusumawati, R. (2023). Evaluasi Clustering K-Means dan K-Medoid Pada Persebaran Covid-19 di Indonesia dengan Metode Davies-Bouldin Index (DBI). In Jurnal MNEMONIC, 6(2), 117-128
  4. Firdaus, H. S., Nugraha, A. L., Sasmito, B., Awaluddin, M., & Nanda, C. A. (2021). Perbandingan metode Fuzzy C-Means dan K-Means untuk pemetaan daerah rawan kriminalitas di Kota Semarang. Elipsoida, 4(1), 58–64
  5. Hendrastuty, N. (2024). Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa. Jurnal Ilmiah Informatika dan Ilmu Komputer (Jima-Ilkom), 3(1), 46–56. https://doi.org/10.58602/jima-ilkom.v3i1.26
  6. Kousis, A., & Tjortjis, C. (2021). Data Mining Algorithms for Smart Cities: A Bibliometric Analysis. In Algorithms, 14(8), 1-35. https://doi.org/10.3390/a14080242
  7. Ling, L. S., dan Weiling, C. T. (2025). Enhancing Segmentation: A Comparative Study of Clustering Methods. Institute of Electrical and Electronics Engineers (IEEE), vol. 13, 47418-47439. https://doi.org/10.1109/ACCESS.2025.3550339
  8. Malau, H., Saragih, J. R., & Purba, T. (2025). Strategi Perencanaan Wilayah dalam Menanggulangi Dampak Perubahan Iklim pada Kawasan Pertanian. PESHUM: Jurnal Pendidikan, Sosial dan Humaniora, 4(2), 2316-2323
  9. Nur, I. M., Syifa, A. N. L., Kharis, M., Permatasari, S. H. 2023. Implementasi Fuzzy C-Means dalam Pengelompokan Hasil Panen Padi di Provinsi Bali. Variance: Journal of Statistics and its Applications, 5(1), 13-24. https://doi.org/10.30598/variancevol5iss1page132-4
  10. Quirinno, R. S., Murtiana, S., Asmoro, N. Peran Sektor Pertanian dalam Meningkatkan Ketahanan Pangan dan Ekonomi Nasional. NUSANTARA: Jurnal Ilmu Pengetahuan Sosial, 11(7), 2811-2822. https://doi.org/10.31604/jips.v11i7.2024
  11. Rudianto, R. D., & Wijayanto, A. W. (2023). Analisis perbandingan K-Means dan K-Medoids dalam pengelompokan provinsi berdasarkan Indeks Demokrasi Indonesia 2021. Komputika: Jurnal Sistem Komputer, 13(1), 19–27. https://doi.org/10.34010/komputika.v13i1.10812
  12. Singh, A. K., Mittal, S., Malhotra, P., dan Srivastava, Y. V. (2020). Clustering Evaluation by Davies Bouldin Indeks (DBI) in Cereal data using K-Means. Proc. 4th Int. Conf. Comput. Methodol. Commun. ICCMC 2020, pp. 306–310. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00057
  13. Supriyadi, A., Triayudi, A., & Sholihati, I. D. (2021). Perbandingan Algoritma K-Means dengan K-Medoids pada Pengelompokan Armada Kendaraan Truk Berdasarkan Produktivitas. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 6(2), 229-240
  14. Soesmono, S., Pertiwi, R., Saputri, B., Putri, N., & Widodo, E. (2025). Pengelompokan Provinsi di Indonesia Berdasarkan Tingkat Pengangguran Tahun 2023 Menggunakan K-Medoids. Emerging Statistics and Data Science Journal, 3(1), 498-515
  15. Syukron, H., Fauzi Fayyad, M., Junita Fauzan, F., Ikhsani, Y., & Gurning, U. R. (2022). Perbandingan K-Means K-Medoids dan Fuzzy C-Means untuk Pengelompokan Data Pelanggan dengan Model LRFM. MALCOM: Indonesian Journal of Machine Learning and Computer Science 2(2), 76–83
  16. Tendean, T., & Purba, W. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means. Jurnal Sains dan Teknologi, 1(2), 5-11. https://doi.org/10.34013/saintek.v1i 2.31
  17. Triayudi, A., Pinastawa, I. W. R., Pratama, J. D., Ningsih, S. (2024). Clustering. Yogyakarta: PT Penamudamedia
  18. Turrahma R. N., Putra, A. N. C., Alfajri, M. D., Gusmanto, R., dan Oktoeberza, W. K. Z. (2023). Implementasi Fuzzy C-Means untuk Clustering data Harga Saham Harian Pada PT. Astra International TBK. Jurnal Rekursif, 11(1), 64-69
  19. Zheng, A. Cai, J., Yang, H., and Zhao, X. (2020). CPGAN: Curve Clustering Architecture Based on Projected Latent Vector of Generative Adversarial Network. Institute of Electrical and Electronics Engineers (IEEE). https://doi.org /10.1109/access.2020.299

Last update:

No citation recorded.

Last update:

No citation recorded.