skip to main content

Estimasi Probit Biner Semiparametrik Spline Truncated pada Status Persentase Penduduk Miskin

*Rizki Adisetya Tahwin  -  Departemen Statistika, Fakultas Sains dan Analitika Data, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia, Indonesia
Vita Ratnasari  -  Departemen Statistika, Fakultas Sains dan Analitika Data, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia, Indonesia
I Nyoman Budiantara  -  Departemen Statistika, Fakultas Sains dan Analitika Data, Institut Teknologi Sepuluh Nopember, Sukolilo, Surabaya 60111, Jawa Timur, Indonesia, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Regression analysis is a statistical method used to model the relationship between predictor variables and response variables. To analyse categorical response variables, probit regression can be used. There are three probit models based on the type of response variable, namely binary probit, multinomial probit, and ordinal probit. Binary probit is a method used to analyse response variables with two categories. Probit models are often used because they produce more stable probabilities in small samples because it uses the normal distribution. There are three types of binary probit models based on curve approaches, namely parametric, non-parametric, and semi-parametric. Semi-parametric regression was chosen because it combines parametric and non-parametric components. Conventional semi-parametric regression often cannot provide accurate estimates. Therefore, the use of truncated splines is relevant because they can handle the flexibility of unknown functions. This study aims to estimate a semi-parametric binary probit model with truncated splines using maximum likelihood estimation. The resulting likelihood function is not in closed form, requiring Newton-Raphson numerical iteration. The results show that the best model is obtained with one knot point, which has an accuracy of 84.21% and an AUC of 0.84, indicating that the model's prediction classification is verry good.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
PERJANJIAN PENGALIHAN HAK CIPTA
Subject
Type Research Instrument
  Download (146KB)    Indexing metadata
Keywords: Categorical Data

Article Metrics:

  1. Adrianingsih, N. Y., & Dani, A. T. R. (2021). Estimasi Model Regresi Semiparametrik Spline Truncated Menggunakan Maximum Likelihood Estimation (MLE). Jambura Journal of Probability and Statistics, 2(2), 56–63
  2. Agresti, Alan. (2002). Categorical data analysis. Wiley-Interscience
  3. Aikake, H. (1974). A New Look at the Statistical Model Identification. IEEE Transaction on Automatic Control, 19(6)
  4. Du, M., Hu, T., & Sun, J. (2019). Semiparametric probit model for informative current status data. Statistics in Medicine, 38(12), 2219–2227
  5. Epriliyanti, Y. A., & Ratnasari, V. (2020). Pemodelan Faktor-faktor yang Mempengaruhi Keefektifan Sistem Pembelajaran Daring (SPADA) Menggunakan Regresi Probit Biner (Studi Kasus: Mahasiswa ITS Masa Pandemi COVID-19). Inferensi, 3(2), 115–122
  6. Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing
  7. Goepp, V., Bouaziz, O., & Nuel, G. (2018). Spline Regression with Automatic Knot Selection. Journal of Applied Statistics, 45(2), 212–229
  8. Güneri, Ö. İ., Durmuş, B., & İncekırık, A. (2022). Ordered Choice Models: Ordinal Logit and Ordinal Probit. JIS Journal of Interdisciplinary Sciences, 6(2), 21–41
  9. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivriate Data Analysis (8th ed.)
  10. Hidayat, F. M., Kusrini, & Yaqin, A. (2024). Dielektrika-Jurnal Ilmiah Kajian Teori dan Aplikasi Teknik Elektro Penerapan Algoritma Naïve Bayes Classifier Untuk Klasifikasi Status Gizi Stunting Pada Balita. Jurnal Ilmiah Kajian Teori Dan Aplikasi Teknik Elektro , 11(2), 107–118
  11. Horowitz, J. L., & Savin, N. E. (2001). Binary Response Models: Logits, Probits and Semiparametrics. Journal of Economic Perspectives, 15(4), 43–56
  12. Ibrahim, N. S. (2024). Analisis Diskriminan Linear Robust dengan Penduga Minimum Covariance Determinant (Studi Kasus: Indeks Kerentanan Pangan Menurut Kabupaten/Kota di Indonesia Tahun 2023). Emerging Statistics and Data Science Journal, 2(2)
  13. Izzah, N., & Budiantara, I. N. (2020). Pemodelan Faktor-faktor yang Mempengaruhi Tingkat Partisipasi Angkatan Kerja Perempuan di Jawa Barat Menggunakan Regresi Nonparametrik Spline Truncated. Inferensi, 3(1), 21–27
  14. Juliana, S. F., Taaha, Y. R., & Guampe*, F. A. (2023). Laju Pertumbuhan Penduduk dan Inflasi Di Indonesia Tahun 2001-2021. JIM: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah, 8(2), 230–239
  15. Liu, H., & Qin, J. (2018). Semiparametric probit models with univariate and bivariate current-status data. Biometrics, 74(1), 68–76
  16. Montgomery, D. C. (2012). Introduction to Linear Regression Analysis
  17. Sari, I. N. I., & Ratnasari, V. (2020). Pemodelan Regresi Logistik dan Probit Biner pada Faktor yang Memengaruhi Ketercapaian Target Unmet Need di Provinsi Jawa Barat. Jurnal Sains Dan Seni ITS, 9(2), 200–207
  18. Simundic, A.-M., & Bio-One, G. (2014). Measures of Diagnostic Accuracy: Basic Definitions. Journal EJIFCC, 19(4)

Last update:

No citation recorded.

Last update:

No citation recorded.