skip to main content

Penerapan Metode Fuzzy Time Series Markov Chain Untuk Meramalkan Nilai Transaksi Belanja Menggunakan Uang Elektronik di Indonesia

Muhammad Irsadul Ibaad orcid  -  Program Studi Statistika, FMIPA, Universitas Mulawarman, Indonesia, Indonesia
*Meiliyani Siringoringo orcid scopus  -  Laboratorium Statistika Ekonomi dan Bisnis, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Indonesia, Indonesia
Ika Purnamasari orcid scopus  -  Laboratorium Statistika Ekonomi dan Bisnis, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Indonesia, Indonesia
Desi Yuniarti scopus  -  Laboratorium Statistika Ekonomi dan Bisnis, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Indonesia, Indonesia
Suyitno Suyitno scopus  -  Laboratorium Statistika Terapan, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Indonesia, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Forecasting is an analytical process used to predict future conditions based on historical and current data to minimize errors. The Fuzzy Time Series (FTS) Markov Chain method is effective for handling uncertain, nonlinear, and fluctuating data, making it suitable for forecasting electronic payment transactions in Indonesia. These transactions often show gradual trends, seasonality, and external influences such as policy changes and consumer behavior, leading to data uncertainty that traditional models struggle to capture. A key factor in the FTS method is the interval length, which affects the accuracy of fuzzy set formation. This study compared two interval determination methods: Sturges formula and automatic clustering, to forecast Indonesia’s electronic payment transaction value for September 2024. Results showed that Sturges produced a forecast of Rp52,836.07 billion with a MAPE of 8.51%, while automatic clustering yielded a forecast of Rp55,369.31 billion with a lower MAPE of 3.90%. The findings indicate that the hybrid FTS-Markov Chain approach, especially when combined with automatic clustering, offers better accuracy. It adapts more effectively to the natural structure of the data, making it a more reliable method for forecasting complex and uncertain transaction patterns.
Fulltext View|Download
Keywords: Automatic Clustering; Fuzzy Time Series Markov Chain; Money Transaction Values; Forecasting; Sturges

Article Metrics:

  1. Alfarisi, S. (2017) ‘Sistem Prediksi Penjualan Gamis Toko QITAZ Menggunakan Metode Single Exponential Smoothing’, JABE (Journal of Applied Business and Economic), 4(1), p. 80. Available at: https://doi.org/10.30998/jabe.v4i1.1908
  2. Alfadhilah, T. et al. (2024) ‘Efektifitas Pemakaian E-Money Dalam Mendukung Sistem Pembayaran Di Era Digital’, 2(1), pp. 42-48. Available at: https://doi.org/10.61722/jiem.v2i1.638
  3. Ali, M.M. et al. (2022) ‘Metodologi Penelitian Kuantitatif dan Penerapannya dalam Penelitian’, Education Journal.2022, 2(2), pp. 1–6
  4. Amalutfia, S.Y. & Hafiyusholeh, M. (2020) ‘Analisis Peramalan Nilai Tukar Rupiah Terhadap Dollar dan Yuan Menggunakan FTS-Markov Chain’, Vygotsky, 2(2), p. 102. Available at: https://doi.org/10.30736/vj.v2i2.258
  5. Biringallo, M. et al. (2022) ‘Perbandingan Akurasi Penggunaan Metode Fuzzy Time Series Markov-Chain dan Cheng Pada Peramalan Jumlah Kecelakaan Lalulintas di Kota Kendari’, Seminar Nasional Sains dan Terapan VI, 6(April), pp. 85–99
  6. Herlambang, L.A. & Sugianto, W. (2021) ‘Analisis Peramalan Penjualan Sepeda Dan Motor Listrik Di PT XYZ’, Jurnal Comasie, 4(1), pp. 130–138. Available at: http://ejournal.upbatam.ac.id/index.php/comasiejournal%0AJurnal Comasie ISSN (Online) 2715-6265%0APERANCANGAN
  7. Julida, & Murni. (2024) ‘Perbandingan Metode Fuzzy Time Series Model Chen Dan Model Markov Chain Untuk Memprediksi Curah Hujan Di Kota Padang’. Jurnal Pendidikan Tambusai. Available at: https://doi.org/https://doi.org/10.31004/jptam.v8i1.14613
  8. Laily, Y.H., Rakhmawati, F. & Husein, I. (2023) ‘Penerapan Metode Fuzzy Time Series-Markov Chain Dalam Peramalan Curah Hujan Sebagai Jadwal Tanaman Padi’, Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 4(1), pp. 162–174. Available at: https://doi.org/10.46306/lb.v4i1.235
  9. Hidayatullah., Yozza. & Rahmi (2022) ‘Perbandingan metode fuzzy time series markov chain dan fuzzy time series cheng dalam meramalkan nilai tukar rupiah terhadap dolar Amerika Serikat (AS)’, 12(2), pp. 121–134. Available at: https://doi.org/https://doi.org/10.25077/jmua.12.2.121-134.2023
  10. Pambudi, R.A., Setiawan, B.D. & Wijoyo, S.H. (2018) ‘Implementasi Fuzzy Time Series untuk Memprediksi Jumlah Kemunculan Titik Api’, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), pp. 4767–4776. Available at: https://doi.org/https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/3069
  11. Sari, L. et al. (2024) ‘Metode Fuzzy Time Series Markov Chain Untuk Peramalan Curah Hujan Harian’, 15(01), pp. 142–147. Available at: https://doi.org/10.35970/infotekmesin.v15i1.2182
  12. Usman, R. (2017) ‘Karakteristik Uang Elektronik Dalam Sistem Pembayaran’, Yuridika, 32(1), p. 134. Available at: https://doi.org/10.20473/ydk.v32i1.4431
  13. Wei, W.. (2006) Time Series Analysis Univariate and Multivariate Methods Second Edition. New York: Perason Education
  14. Xihao, S. & Yimin, L. (2008) ‘Average-based fuzzy time series models for forecasting Shanghai compound index *’, UK World Journal of Modelling and Simulation, 1(2), pp. 104–111. Available at: http://www.worldacademicunion.com/journal/1746-7233WJMS/wjmsVol04No02paper03.pdf
  15. Zeidi, A., Kusnandar, D. & Debataraja, N.N. (2023) ‘Perbandingan Average Based Dan Sturges Pada Fuzzy Time Series Chen Untuk Peramalan Harga Saham’, Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster), 12(1), pp. 43–52. Available at: https://doi.org/http://dx.doi.org/10.26418/bbimst.v12i1.62556

Last update:

No citation recorded.

Last update:

No citation recorded.