skip to main content

BOOTSTRAP AGGREGATING CLASSIFICATION AND REGRESSION TREES (BAGGING CART) UNTUK KLASIFIKASI POTENSI KARYAWAN RESIGN BERDASARKAN KENYAMANAN BEKERJA

Muhammad Fajar Syabana  -  Department of Statistics, faculty of Sains and Mathematics, Diponegoro University, JL. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
*Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Masithoh Yessi Rochayani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Phenomenon of employee resignation is a significant challenge for companies because it affect the productivity and stability of the company's operations. Every companies supposed to analyze the potential of employee resignation. This research aims to classify the potential of employee resignation based on working comfort and applies the classification modeling method from Decision Tree: Classification And Regression Trees (CART) and the ensemble Bootstrap Aggregating (Bagging) method. CART is a non-parametric method that is effective in building classification and prediction models based on decision trees, while Bagging is an ensemble method that combines several CART models to improve the accuracy and stability of predictions. The CART model provides an accuracy of 73% and f1-score of 62%, while the Bagging CART model provides an accuracy of 87% and f1-score of 88%. This research shows an increase in accuracy when using Bagging CART model of 14%. The most important variable to build the model and make predictions is the age. Age is also used as the root node in building CART model.

Note: This article has supplementary file(s).

Fulltext View|Download |  Instrumen Riset
Bootstrap Aggregating Classification And Regression Trees (Bagging Cart) Untuk Klasifikasi Potensi Karyawan Resign Berdasarkan Kenyamanan Bekerja
Subject Comfortable; Resignation; CART; Bagging
Type Instrumen Riset
  Download (21KB)    Indexing metadata
Keywords: Employee; Resignation;Working Comfort; CART; Bagging

Article Metrics:

  1. Arian R, V. E., & Peter, M. (1998). Receiver Operating Characteristic (ROC) Analysis: Basic Principlesn and Application in Radiologi. European Journal of Radiology, 27(2)
  2. Breiman L. 1996. Bagging Predictors. Machine Learning, 24: 123-140
  3. Breiman, L., Friedman, J.H., Olshen, R.A., dan Stone, C.J. 1984. Classification and Regression Trees. New York: Chapman and Hall
  4. Fergian, A. 2020. Faktor-Faktor Resign Karyawan Marketing Terhadap Kinerja Bank Syariah. Skripsi. Jurusan Perbankan Syariah Fakultas Ekonomi dan Bisnis Islam InstitutAgama Islam Negri Metro
  5. Harits, A., Robin, D., dan Arief, P.M. 2018. Evaluasi Performa Metode Deep Learning untuk Klasifikasi Citra Lesi Kulit The HAM10000. SNIKO, Bandung
  6. Isyandi, B. 2004. Manajemen Sumber Daya Manusia Dalam Perspektif Global. Pekanbaru: Unri Press
  7. Lewis, R.J. 2000. An Introduction to Classification and Regression Trees (CART) Analysis. Presented at the 2000 Annual Meeting of Society for Academic Emergency Medicine of Sanfransisco. California
  8. Luqman, H. 2023. Mengidentifikasi Fenomena Resign Setelah THR.Talentics.id Tersedia: https://talentics.id/resources/blog/resign-adalah/ (diakses pada 24 Januari 2024)
  9. Mathis, R. L. dan Jackson, J. H. 2006. Manajemen Sumber Daya Manusia. Jakarta: Salemba Empat
  10. Republik Indonesia, Undang Undang Nomor 13 Tahun 2003 Tentang Ketenagakerjaan
  11. Rohmah, L. 2018. Bootstrap Aggregating Classification and Regression Tree (Bagging CART) pada Pengklasifikasian Indeks Pembangunan Manusia Kabupaten/Kota di Indonesia Tahun 2016. Skripsi. Program Studi Statistika Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya Malang
  12. Rommalla, S., 2021. 7 Ciri Lingkungan Kerja Positif yang Ideal bagi Milenial. Glints.com Tersedia: https://employers.glints.com/id-id/blog/7-ciri-lingkungan-kerja-positif-yang-ideal-bagi-milenial/ (diakses pada tanggal 19 Desember 2023)
  13. Rosandy, T. 2016. Perbandingan Metode Naïve Bayes Classifier dengan Metode Decission Tree (C4.5) untuk Menganalisa Kelancaran Pembiayaan. Jurnal TIM Darmajaya, 2(1), pp. 52-62
  14. Sa’adah, U., Rochayani, M.Y., dan Astuti, A.B. 2021. Knowledge discovery from gene expression dataset using bagging lasso decisiton tree. Indonesian Journal of Electrical Engineering and Computer Science. Vol.21, No. 2, pp. 1151-1159
  15. Shin, T. 2023. Understanding Feature Importance in Machine Learning. Builtin.com. Tersedia: https://builtin.com/data-science/feature-importance (diakses pada tanggal 10 Agustus 2024)
  16. Sumartini, S.H. dan Purnami, S.W. 2015. Penggunaan Metode Classification and Regression Trees (CART) untuk Klasifikasi Rekurensi Pasien Kanker Serviks di RSUD Dr. Soetomo Surabaya. Jurnal Sains dan Seni ITS, Vol. 4, No. 2, Hal: D211-D216
  17. Zou, K. H., A.James, O., & Mauri, L. (2007). Receiver Operating Characteristic (ROC) Analysis For Evaluating Diagnostic Test and Predictive Models. Circulation, 115(5)

Last update:

No citation recorded.

Last update:

No citation recorded.