skip to main content

FUZZY POSSIBILISTIC C-MEANS (FPCM) CLUSTERING UNTUK IDENTIFIKASI KELUHAN UTAMA PELANGGAN INDIHOME PADA DATA TWEETS

*Taufik Aji Putra  -  Department of Statistics, Universitas Diponegoro , Jl. Prof. Jacob Rais, Tembalang, Semarang, Indonesia 50275, Indonesia
Iut Tri Utami  -  Department of Statistics, Universitas Diponegoro , Jl. Prof. Jacob Rais, Tembalang, Semarang, Indonesia 50275, Indonesia
Ardiana Alifatus Sa'adah  -  Department of Statistics, Universitas Diponegoro , Jl. Prof. Jacob Rais, Tembalang, Semarang, Indonesia 50275, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Customer complaints reveal product or service issues and can drive improvements to enhance satisfaction. Many companies use Twitter as a platform to interact with customers, making handling complaints through social media crucial for building a positive image and maintaining customer loyalty. IndiHome Regional 4 faces challenges in identifying main complaints due to a high volume of complaints on Twitter. Cluster analysis groups similar complaints, aiding the identification process. Text mining converts textual data into numerical format, streamlining complaint processing. Fuzzy Possibilistic C-Means Clustering, a fuzzy-based method, enables data membership across clusters with varying degrees of membership. By adopting relative (fuzzy) and absolute (possibilistic) membership, more accurate data placement is achieved. Data consists of IndiHome Regional 4 customer complaint tweets received via the Twitter channel "IndiHomeCare" from January to December 2022. The clustering process formed 4 clusters based on the smallest Extended Xie-Beni Index value, tested with different cluster numbers (3-7). Witel Yogyakarta had the highest members and complaints in each cluster, while Witel Kudus had the lowest. Word Cloud analysis revealed main complaints in each cluster, including WiFi-related subscription costs, internet disruptions, customer service issues, and slow connections.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (653KB)    Indexing metadata
Keywords: IndiHome; Tweets; Clustering; Fuzzy Possibilistic C-Means; Extended Xie-Beni Index; Word Cloud

Article Metrics:

  1. Alwi, W., dan Hasrul, M. 2018. Analisis Klaster untuk Pengelompokkan Kabupaten/Kota di Provinsi Sulawesi Selatan Berdasarkan Indikator Kesejahteraan Rakyat. Jurnal Matematika Dan Statistika Serta Aplikasinya (Jurnal MSA), Vol. 6, No. 1, Hal: 35-42
  2. Aulia, G. P., Widiharih, T., dan Utami, I. T. 2023. Penerapan Text Mining dan Fuzzy C-Means Clustering untuk Identifikasi Keluhan Utama Pelanggan PDAM Tirta Moedal Kota Semarang. Jurnal Gaussian, Vol. 12, No. 1, Hal: 126-135
  3. Boudouda, H., Seridi, H., dan Akdag, H. 2005. The Fuzzy Possibilistic C-Means Classifier. Asian Journal of Information Technology, Vol. 4, No. 11, Hal: 981-985
  4. Feldman, R. dan Sanger, J. 2007. The Text Mining Handbook: Advances Approaches in Analyzing Unstructured Data. New York: Cambridge University Press
  5. IndiHome. 2023. Apa itu IndiHome?. Tersedia: https://www.indihome.co.id/about-indihome. (diakses pada tanggal 28 Februari 2023)
  6. Ivosights. 2023. Apa itu Word Cloud? Kenali Fungsinya untuk Aplikasi Digital Monitoring. Tersedia: https://ivosights.com/read/artikel/word-cloud-apa-itu-kenali-fungsinya-untuk-aplikasi-digital-monitoring (diakses pada tanggal 28 Februari 2023)
  7. Klawonn, F. dan Höppner, F. 2003. What is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzier. 5th International Symposium on Intelligent Data Analysis, Berlin: 28-30 Agustus 2003. https://www.researchgate.net/publication/221460808_What_Is_Fuzzy_about_Fuzzy_Clustering_Understanding_and_Improving_the_Concept_of_the_Fuzzifier DOI: 10.1007/978-3-540-45231-7_24
  8. Kusumadewi, S. dan Purnomo, H. 2013. Aplikasi Logika Fuzzy: Untuk Pendukung Keputusan. Edisi ke-2. Yogyakarta: Graha Ilmu
  9. Muchsin, A.K., dan Sudarma, M. 2015. Penerapan Fuzzy C-Means Untuk Penentuan Besar Uang Kuliah Tunggal Mahasiswa Baru. Lontar Komputer, Vol. 6, No. 3, Hal: 175-184
  10. Nayak, J., Naik, B., dan Behera, H.S. 2015. Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. Computational Intelligence in Data Mining, Vol. 2, Hal: 133-149
  11. Putri, G.N.S, Ispriyanti, D., dan Widiharih, T. 2022. Implementasi Algoritma Fuzzy C-Means dan Fuzzy Possibilistics C-Means untuk Klasterisasi Data Tweets pada Akun Twitter Tokopedia. Jurnal Gaussian, Vol. 11, No. 1, Hal: 86-98
  12. Suganya, R., dan Shanthi, R. 2012. Fuzzy C-Means Algorithm- A Review. International Journal of Scientific and Research Publications (IJSRP), Vol 2, No. 11, Hal: 1-3
  13. Talakua, M. W., Leleury, Z. A., dan Talluta, A.W. 2017. Analisis Cluster dengan Menggunakan Metode K-Means untuk Pengelompokkan Kabupaten/Kota di Provinsi Maluku berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014. Jurnal Ilmu Matematika dan Terapan, Vol. 11, No. 2, Hal: 119-128
  14. Upendra, B., dan Babu, A.S. 2016. KNN TFIDF Based Named Entity Recognition. International Journal of Scientific Development and Research (USDR), Vol. 1, No.12, Hal: 35-39
  15. Vijaymeena, M.K. dan Kavitha, K. 2016. A Survey on Similiarity Measures in Text Mining. Machine Learning and Applications, Vol. 3, No.1, Hal: 19-28
  16. Zhou, Y., Martin, T., dan Zhang, C. 2008. A Validity Index for Fuzzy and Possibilistic C-means Algorithm. Proceedings of IPMU’08, Malaga: 22-27 Juni 2008

Last update:

No citation recorded.

Last update:

No citation recorded.