skip to main content

PERBANDINGAN METODE HAZARD MULTIPLIKATIF DAN ADITIF PADA LAJU PERBAIKAN KONDISI KLINIS PASIEN STROKE DI RS MH THAMRIN CILEUNGSI TAHUN 2021

*Zulfa Luthfiyyah Ayunda  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Stroke is a condition that can result in permanent brain damage or even death. In Indonesia, the prevalence of stroke increased from 7% in 2013 to 10.9% in 2018. Numerous factors can affect a stroke patient's ability to recover. Survival analysis is a method that can be used to identify the variables that influence stroke patient’s ability to recover. Cox proportional hazard and Lin-ying additive hazard approaches were utilized in this study to analyze stroke patient data from MH Thamrin Cileungsi Hospital. The most widely used regression model for survival data is the Cox proportional hazard which makes the assumption that the ratio between the hazard functions of various people is constant. In contrast, in additive hazard regression there is no assumption of proportionality. Age and cardiac history are the factors that have an impact on how well stroke patients recover, according to the findings. The Lin-Ying additive hazard approach yields the best results since its RMSE value is lower (0.3808777) than that of the cox proportional hazard model (0.9248512).
Fulltext View|Download
Keywords: Cox Proportional Hazard; Stroke; Survival; Adittive Hazard Regression; Lin-Ying

Article Metrics:

  1. Allison, P. D. 2010. Survival Analysis Using SAS: A Practical Guide, Second Edition. Cary, NC: SAS Institute Inc
  2. Collett, D. 2003. Modelling Survival Data in Medical Research Second Edition. US: Chapman & Hall
  3. Cook, R. J., & Lawless, J. F. 2007. The statistical analysis of recurrent events. Springer
  4. Danardono. 2012. Analisis Data Survival. Diktat Kuliah. Universitas Gadjah Mada. Yogyakarta
  5. Kemenkes RI. 2019. Laporan Nasional RISKESDAS 2018. Jakarta: Kementrian Kesehatan Republik Indonesia
  6. Kleinbaum, D. G., & Klein, M. 2012. Survival Analysis: A Self‐Learning Text. Spinger
  7. Klein, J.P. and Moeschberger, M.L., 2003. Analysis Techniques for Censored and Truncated Data Second Edition, New York
  8. Lee E.T., dan Wang, J.W. 2003. Statistical Methods For Survival Data Analysis. Third Edition. New Jersey : John Wiley And Sons
  9. Xin, Xin. 2011. A Study Of Ties And Time-Varying covariates In Cox Proportional Hazards Model. Tesis. Canada: University of Guelph

Last update:

No citation recorded.

Last update:

No citation recorded.