skip to main content

IMPLEMENTASI METODE CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI SENTIMEN ULASAN PENGGUNA APLIKASI MYPERTAMINA

*Arta Marisa Pardede  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro., Indonesia
Mustafid Mustafid  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro., Indonesia
Sugito Sugito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro., Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Sentiment analysis has gained significant attention in recent years, with researchers employing various machine learning and deep learning techniques. While Convolutional Neural Networks (CNN) were initially designed for image processing, their effectiveness in text classification tasks has been established. This study focuses on enhancing sentiment classification performance for customer reviews of MyPertamina by utilizing a CNN model with Word2Vec embeddings. The research involves analyzing user reviews obtained from the Google Play Store for MyPertamina's mobile application. The CNN model, incorporating Word2Vec embeddings, is trained to classify these reviews into positive and negative sentiment categories. Experimental evaluations reveal that the optimal hyperparameters for the Word2Vec model are a window size of 5 and a word embedding dimension of 300. Regarding the CNN model, both the dropout rate and learning rate significantly impact classification performance. The best results are achieved with a learning rate of 0.001 and a dropout rate of 0.3. The findings demonstrate that the CNN model with Word2Vec embeddings achieves an impressive accuracy of 96.14% in classifying customer reviews within the MyPertamina application. This underscores the efficacy of employing this approach to improve sentiment classification for customer feedback. 

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA Form
Subject
Type Research Instrument
  Download (404KB)    Indexing metadata
Keywords: Classification; Word2Vec; CNN; MyPertamina

Article Metrics:

  1. Andika, L. A., Amalia, P., & Azizah, N. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier. 2(1), 34–41
  2. Fesseha, A., Xiong, S., Emiru, E. D., Diallo, M., Dahou, A. (2021). Text classification based on convolutional neural networks and word embedding for low-resource languages: Tigrinya. Information (Switzerland), 12(2), 1–17. https://doi.org/10.3390/info12020052
  3. Goodfellow, Y. Bengio, A. Courville, Deep Learning. Cambridge: The MIT Press, 2016
  4. Kim, Y. (2014). Convolutional neural networks for sentence classification. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1746–1751
  5. https://doi.org/10.3115/v1/d14-1181
  6. Kumar, L., Bhatia, P. K. (2013). Available Online at www.jgrcs.info TEXT MINING : CONCEPTS , PROCESS AND APPLICATIONS. 4(3), 36–39
  7. Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient estimation of word representations in vector space. 1st International Conference on Learning Representations, ICLR 2013 - Workshop Track Proceedings, 1–12
  8. Munikar, M., Shakya, S., Shrestha, A. (2019). Fine-grained Sentiment Classification using BERT. International Conference on Artificial Intelligence for Transforming Business and Society, AITB 2019, November. https://doi.org/10.1109/AITB48515.2019.8947435
  9. Qeis, M. I. (2015). Aplikasi Wordcloud sebagai Alat Bantu Analisis Wacana. International Conference on Language, Culture, and Society (ICLCS) - LIPI, November 2015. https://www.researchgate.net/publication/316736417
  10. Rao, P. (2019). Fine-grained Sentiment Analysis in Python (Part1). https://towardsdatascience.com/fine-grained-sentiment-analysis-in-pythonpart-1-2697bb111ed4
  11. Zufar, M., & Setiyono, B. (2016). Convolutional Neural Networks untuk Pengenalan Wajah Secara Real-Time. JURNAL SAINS DAN SENI ITS, 5, A-74

Last update:

No citation recorded.

Last update:

No citation recorded.