skip to main content

PERBANDINGAN METODE OPTIMASI SILHOUETTE, ELBOW, DAN GAP STATISTICS DALAM MENENTUKAN NILAI K TERBAIK PADA ANALISIS K-MEANS CLUSTERING

*Metalia Widya Diantika  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Bagus Arya Saputra  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2025 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Stunting is a condition of malnutrition status that is chronic in growth and development from the beginning of life, malnutrition puts children at greater risk of death. One of the efforts to overcome stunting is to determine in advance the provinces that need to be prioritized in handling the factors that cause stunting by grouping 34 provinces in Indonesia. This study uses k-means clustering to partition data according to their respective characteristics into the form of two or more clusters, determining the optimal number of clusters through elbow optimization methods, gap statistics and silhouette. The method used to test the best cluster results is the Davies Bouldin Index (DBI) method. The results of the elbow method clustering test produce K = 3 with a DBI value of 0.6392677, the gap statistics method produces K = 1 without DBI testing because only 1 cluster is formed, while the silhouette method produces K = 2 with a DBI value of 0.2116945. This shows that the results of clustering k-means with the silhouette method produce better cluster quality because it has a lower DBI value than other methods.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (244KB)    Indexing metadata
Keywords: Stunting; Clusterin; K-Means; Silhouette; Elbow; Gap Statistics

Article Metrics:

  1. Arifin, D. Z., Irdasari, S. Y., & Sukandar, H. 2012. Analisis Sebaran dan Faktor Risiko Stunting pada Balita di Kabupaten Purwakarta. Jurnal Pustaka Unpad, 1–9
  2. Awalluddin, A., & Taufik, I. 2017. Analisis Cluster Data Longitudinal pada Pengelompokan Daerah Berdasarkan Indikator IPM di Jawa Barat. Prosiding Seminar Nasional Metode Kuantitatif, 187–194
  3. Blake, R. A., et al. 2016 . LBW And SGA Impact Longitudinal Growth And Nutritional Status Of Filipino Infants. PLoS ONE Vol.11, No. 7: Hal. 1–13
  4. Gujarati, D. 2009. Dasar-dasar Ekonometrika Jilid 2. Jakarta: Erlangga
  5. Helilintar, R., & Farida, I. N. 2018. Penerapan Algoritma K-Means Clustering untuk Prediksi Prestasi Nilai Akademik Mahasiwa. Jurnal Sains dan Informatika Vol. 4, No.2: Hal. 80–87
  6. Johnson, W.A. & Wichern, D.W. 2007. Applied Multivariate Statistical Analysis. 6th Edition. Pearson Prentice Hall: New Jersey
  7. Kartikasari, M. D. 2021. Self-Organizing Map Menggunakan Davies-Bouldin Index dalam Pengelompokan Wilayah Indonesia Berdasarkan Konsumsi Pangan. Jambura Journal of Mathematics Vol. 3, No. 2: Hal. 187–196
  8. Kemenkes RI. 2021. Profil Kesehatan Indonesia. Jakarta : Kementerian Kesehatan Republik Indonesia
  9. Madhulatha, T.S. 2012. An Overview On Clustering Methods. Journal of Engineering Vol. 2, No. 4, Hal 719-725
  10. Malik, A., & Tuckfield, B. 2019. Applied Unsupervised Learning with R. Birmingham: Packt Publishing
  11. Margawati, A., & Astuti, A. M. 2018. Pengetahuan ibu, pola makan dan status gizi pada anak stunting usia 1-5 tahun di Kelurahan Bangetayu, Kecamatan Genuk, Semarang. Jurnal Gizi Indonesia (The Indonesian Journal of Nutrition) Vol. 6, No.2: Hal. 82–89
  12. Nahdliyah, M. A., Widiharih, T., & Prahutama, A. 2019. Metode K-Medoids Clustering Dengan Validasi Silhouette Index Dan C-Index (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota Di Jawa Tengah Tahun 2018). Jurnal Gaussian Vol. 8, No.2: Hal. 161–170
  13. Sari, D. N. P., & Sukestiyarno, Y. L. 2021 . Analisis Cluster dengan Metode K-Means pada Persebaran Kasus Covid-19 Berdasarkan Provinsi di Indonesia. PRISMA, Prosiding Seminar Nasional Matematika, 4, 602–610
  14. Sari, R. K., Yugiana, E., & Ponco, S. H. 2021. Profil Statistik Kesehatan 2021. Jakarta : Badan Pusat Statistik
  15. Silvi, R. 2018. Analisis Cluster dengan Data Outlier Menggunakan Centroid Linkage dan K-Means Clustering untuk Pengelompokkan Indikator HIV/AIDS di Indonesia. Jurnal Matematika “MANTIK,” Vol. 4, No.1: Hal. 22–31
  16. UNICEF. 2020. Child Malnutrition. https://data-uniceforg.translate.goog/topic
  17. /nutrition/malnutrition/. Diakses : 2 Maret 2023
  18. Widarjano, A. 2010. Analisis Stastistika Multivariat Terapan. UPP STIM YKPN. Yogyakarta
  19. Wulandari Leksono, et al. 2021. Risiko Penyebab Kejadian Stunting pada Anak. Jurnal Pengabdian Kesehatan Masyarakat: Pengmaskesmas Vol. 1, No. 2: Hal. 34–38

Last update:

No citation recorded.

Last update:

No citation recorded.