skip to main content

PENGELOMPOKAN KABUPATEN/KOTA DI PROVINSI JAWA TENGAH BERDASARKAN INDIKATOR KESEHATAN BAYI DAN BALITA MENGGUNAKAN ALGORITMA FUZZY C-MEANS DAN K-MEDOIDS

*Risa Nur'aini  -  Department of Statistics, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Tatik widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
bagus arya saputra  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
The infant and toddler mortality rate is an indicator of health in Indonesia. If the health level of infants and toddlers in an area is low, the health status in that area is low. Clustering of districts based on infant and toddler health indicators can be used as a guideline for the government in allocating funds and determining health services program. Clustering is a statistical data processing technique that is useful for grouping an area into a klaster based on certain characteristics. This clustering of infants and toddlers uses Fuzzy C-Means and K-Medoids algorithms. The optimal cluster of the two methods is selected using silhouette validation, while for selection of the best method for profiling using standard deviation ratio values.  The optimal number of clusters in the Fuzzy C-Means and K-Medoids algorithms based on silhouette validation for each method is 2 clusters. Based on the value of the standard deviation ratio of each method, the value of  Fuzzy C-Means (1.1062) is smaller than K-Medoids (1,1771), so the 2-klaster of Fuzzy C-Means method is used for the profiling step. Cluster 1 is a group of regions with infant and toddler mortality rates, malnutrition and low birth weight babies, so there must be an increase in the complete basic immunization program and health services. Cluster 2 is a regional group with very good health services, so it is better to maintain the quality of these health services.
Fulltext View|Download
Keywords: Clustering; Fuzzy C-Means; K-Medoids; Silhouette index; Standar deviation ratio; Health

Article Metrics:

  1. Arora, P., Varshney, S., dan Deepali. (2016). Analysis of K-Means and K-Medoids Algorithm For Big Data. Procedia Computer Science, 507-512. doi: 10.1016/j.procs.2016.0
  2. Bezdek, J. C., Ehrlich, R., dan Full, W. (1983, Mei 1983). FCM : The Fuzzy C-Means Clustering Algorithm. Computers and Geosciences, 10, 191-203. Dipetik Oktober 10, 2022
  3. Dinas Kesehatan Jawa Tengah. (2021). Profil Kesehatan Jawa Tengah. Semarang: Dinas Kesehatan Jawa Tengah. Dipetik Desember 12, 2022
  4. Ghozali, I. (2006). Aplikasi Analisis Multivariate Dengan Program SPSS (4 ed.). Semarang: Badan Penerbit Universitas Diponegoro. Dipetik Oktober 26, 2022
  5. Hair, J., Anderson, R., Black, W., Babin, B., dan Tatham, R. (2006). Multivariate Data Analysis (6 ed.). New Jersey: Pearson Education, Inc. Dipetik Oktober 24, 2022
  6. Kaufman, L., & Rousseeuw, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley Series in Probability and Statistics). New York: Wiley
  7. Khang, T. D., Vuong, N. D., Tran, M. K., dan Fowler, M. (2020, Juni 7). Fuzzy C-Means Clustering Algorithm with Multiple Fuzzification Coefficient. Algorithms, 1-11. doi:doi:10.3390/a13070158
  8. Park, H. -S., dan Jun, C. -H. (2009). A simple and fast algorithm for K-Medoids clustering. Expert Systems with Applications, 3336-3341. doi:doi:10.1016/j.eswa.2008.01.039
  9. Patro, S. K., dan Sahu, K. K. (2015, Maret 3). Normalization: A Preprocecing Stage. International Advanced Research Journal in Science, Engineering and Technology, 2(3), -. doi: 10.17148/IARJSET.2015.2305
  10. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation cluster analysis. Journal of Computational and Aplied Mathematics, 20, 53-65. Dipetik Desember 14, 2022, dari https://reader.elsevier.com/reader/sd/pii/0377042787901257?token=82842BD256DCCEEEF29D754DCF268496C452FB696351703C680A8B1C6BFEF92D409B0B9C97E70485C3566E0276F4A5A9danoriginRegion=eu-west-1danoriginCreation=20221214145620
  11. Silvi, R. (2018). Analisis Cluster dengan Data Outlier Menggunakan Metode Centroid Linkage dan K-Means Clusterig untuk Pengelompokan Indikator HIV/AIDS di Indonesia. Jurnal Matematika MANTIK 4.1, 22-31
  12. Widarjono, A. (2015). Analisis Multivariat Terapan : Dengan Program SPSS, AMOS Dan SMARTPLS (2 ed.). Yogyakarta: STIM YKPN

Last update:

No citation recorded.

Last update:

No citation recorded.