skip to main content

METODE TRIPLE EXPONENTIAL SMOOTHING HOLT-WINTER’S MULTIPLICATIVE DAN DEKOMPOSISI KLASIK MULTIPLIKATIF UNTUK PERAMALAN RATA-RATA KENAIKAN KONSENTRASI KARBON DIOKSIDA (CO2) GLOBAL

*Vika Ersita  -  Department of Statistics, Fakultas Sains dan Matematika, Undip, Indonesia
Yuciana Wilandari  -  Department of Statistics, Fakultas Sains dan Matematika, Undip, Indonesia
Sugito Sugito  -  Department of Statistics, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Global warming occurs due the high concentration of Greenhouse Gases (GHG) in the atmosphere, which is called the greenhouse effect. The highest greenhouse gas that causes global warming that is being piled up in the atmosphere due human activity is carbon dioxide. Data on the average increase in global carbon dioxide (C02) concentrations are assumed contain elements of trend and seasonality. Holt-Winter's Multiplicative Triple Exponential Smoothing Method and Multiplicative Classical Decomposition the best choices in predicting data that contains trend and seasonality elements. Forecasting data on the global average increase CO2 has the objective of predicting data for the next 12 periods. The data used is data on the global average increase  for the period January 2013 to December 2022. The prediction error measure used is MAPE (Mean Absolute Percentage Error). The results of the analysis on the Triple Exponential Smoothing Holt-Winter's Multiplicative method obtained a MAPE value of 0.09395%, indicating very good prediction category, while the results of the analysis of the Multiplicative Classical Decomposition method had a MAPE value of 0.07021%, which means that it has very good category in do forecasting. Based on the MAPE value obtained, the best method is the Multiplicative Classical Decomposition method.
Fulltext View|Download
Keywords: Increase in Carbon Dioxide Concentration; Triple Exponential Smoothing Holt-Winter's Multiplicative; Multiplicative Classical Decomposition; MAPE

Article Metrics:

  1. Amstrong, dan Kotler, P. 2001. Prinsip-Prinsip Pemasaran, Edisi 8, Jilid 1. Jakarta: Erlangga
  2. Hakimah, M., Rahmawati, W. M., dan Afandi, A. Y. 2020. Pengukuran Kinerja Metode Peramalan Tipe Exponential Smoothing dalam Parameter Terbaiknya. Jurnal Ilmiah NERO, Vol. 5, No. 1: Hal. 46
  3. Makridakis, S., Wheelwright, S. C., dan McGee, V. E. 1999. Metode dan Aplikasi Peramalan. Jakarta: Binarupa Aksara
  4. Martono, dan Komala, N. 2018. Kondisi Konsentrasi Karbon Dioksida di Bukittinggi selama Kejadian El Nino 2015. Jurnal Kimia dan Pendidikan Kimia, Vol. 3, No. 3: Hal. 118-125
  5. Muchtar, E., Sunoko, H. R., dan Sulistya, W. 2012. Kajian Kerentanan Masyarakat terhadap Perubahan Iklim Berbasis Daerah Aliran Sungai (Studi Kasus: Sub DAS Garang Hulu). Jurnal Ilmu Lingkungan, Vol. 10, No. 1: Hal. 8-18
  6. Nasa.go. 2023. Global Climate Change Vital Signs of The Planet. https://climate.nasa.gov/vital-signs/carbon-dioxide/. Diakses: 6 Maret 2023
  7. Pratama, R. 2019. Efek Rumah Kaca Terhadap Bumi. Jurnal Buletin Utama Teknik, Vol. 14, No. 2
  8. Rahmawati, L. A., dan Haryono, E. 2012. Studi Optimalisasi Sequestrasi Karbon Dioksida (CO_2) Berbasis Rumah Tangga. Jurnal Fakultas Geografi UGM, Vol. 26, No. 1: Hal. 59-79
  9. Sutanhaji, A. T., Anugroho, F., dan Ramadhina, P. G. 2018. Pemetaan Distribusi Emisi Gas Karbon Dioksida (〖CO〗_2) dengan Sistem Informasi Geografis (SIG) pada Kota Blitar. Jurnal Sumber Daya Alam dan Lingkungan, Vol. 5, No

Last update:

No citation recorded.

Last update:

No citation recorded.