skip to main content

PENERAPAN REGRESI COX PROPORTIONAL HAZARD PADA KEJADIAN BERSAMA (TIES) DENGAN METODE BRESLOW, EFRON, DAN EXACT

*Nesty Novita Sari Zega  -  Department of Statistics, Faculty Science and Mathematics, Universitas Diponegoro, Indonesia
Mustafid Mustafid  -  Department of Statistics, Faculty Science and Mathematics, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Department of Statistics, Faculty Science and Mathematics, Universitas Diponegoro, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Dengue Hemorrhagic Fever (DHF) is a contagious disease that continues to be public health concern. This disease can cause death in a short time and often causes an epidemic. Semarang city has a high number of deaths due to DHF. Reducing the mortality rate due to DHF can be done by knowing the factors that affect the patient's recovery rate. Cox proportional hazard regression is a method of survival analysis that represents the relationship between the independent variable and the dependent variable in the form of survival time. This study examined hospitalized DHF patients at RSI Sultan Agung Semarang. The data contains ties, so parameter estimation is carried out using the Breslow, Efron, and Exact methods. These three methods have different levels of computational intensity and size of data ties, so these three methods will be used in this study to determine the most appropriate method for handling DHF data ties at RSI Sultan Agung Semarang. the analysis reveals that the Cox proportional hazards regression model with the Exact method is the most suitable method for handling ties and the recovery rate of DHF patients is affected by age, platelets, and hemoglobin category.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (28KB)    Indexing metadata
Keywords: Cox Proportional Hazard; Ties; DHF

Article Metrics:

  1. Allison, P. 2010. Survival Analysis Using SAS: A Practical Guide. USA: SAS Institute Inc
  2. Collett, D. 2015. Text in Statistical Science: Modelling Survival Data in Medical Research Third Edition. USA: Chapman & Hall
  3. Klein, J. P., dan Moeschberger, M. L. 2003. Survival Analysis Techniques for Cencored annd Truncated Data Second Edition. New York: Springer
  4. Kleinbaum, D. G., dan Klein, M. 2012. Survival Analysis A Self-Learning Text Third Edition. New York: Springer
  5. Lee, E. T., dan Wang, J. W. 2003. Statistical Methods for Survival Data Analysis Third Edition. USA: A John Wiley & Sons, Inc
  6. Moore, D.F. 2016. Applied Survival analysis Using R. Switzerland: Springer
  7. Sa'adah, A.F., Puerwono. 2022. Analisis Durasi Pembayaran Manfaat Pensiun Berkala pada Program Jaminan Sosial Pensiun di Indonesia Menggunakan Metode Cox Proportional Hazard. Jurnal Gaussian Vol. 11, No. 3, Hal: 407-417
  8. Silmi, A.L., Sudarno, dan Kartikasari, P. 2020. Perbandingan Model Regresi Kegagalan Proporsional dari Cox Menggunakan Metode Efron dan Exact. Jurnal Gaussian Vol. 9, No. 4, Hal:474-485
  9. Sukohar, A. 2014. Demam Berdarah Dengue. Medula Unila Vol. 2, No. 1: Hal. 1-15
  10. Therneau, T.M., dan Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. New York: Springer-Verlag, Inc
  11. Wuryandari, T., Danardono, dan Gunardi. 2021. Model Regresi Cox Proportional Hazard pada Data Durasi Proses Kelahiran dengan Ties. Jurnal Statistika Vol. 9, No. 1: Hal. 47-55

Last update:

No citation recorded.

Last update:

No citation recorded.