skip to main content

ANALISIS k-MEDOIDS DENGAN VALIDASI INDEKS PADA IPM DAERAH 3T DI INDONESIA

*Maria Dafrosa Doi  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Human development is a development paradigm that places humans as the main target of all development activities, namely controling over resources, improving health and improving education. The Human Development Index (HDI) in Indonesia varies in each district, especially in the 3T areas. The 3T area is an area that is classified as underdeveloped, remote and outermost in terms of economy, health, education and infrastructure. The k-Medoids method is a partitional clustering method for grouping several objects into clusters. This clustering algorithm uses the medoid as the center of the cluster, so it is robust to data containing outliers. This study aims to classify the 3T regions in Indonesia based on the Human Development Index to find out which areas require more attention from the government in optimizing the Human Development Index numbers. The size of object similarity is calculated by using the Euclidean distance and Manhattan distance, for the selection of the best number of clusters, internal cluster validation, such as Calinski – Harabasz index, Gamma Index, and Silhouette index. The result of this study showed that the best cluster were four by using Euclidean distance measurement, having Calinski – Harabasz index  score of 37.15764, Gamma index score of 0.7821181, and Silhouette index score of 0.3354435.

Fulltext View|Download
Keywords: Human Development Index, k-Medoids, Euclidean Distance, Manhattan Distance, Cluster Validation

Article Metrics:

  1. Aggarawal, C. C.,& Reddy,K. C. 2014. Data Clustering Algoritmas and Applications. New York: CRC Press
  2. Anderberg, M. 1973. Cluster Analysis for Application. New York: Academic Press
  3. Baarsch, J., & Celebi, M. E. 2012. Investigastion of Internal Validity Measures for K-Means Clustering. International Multiconference of Engineers and Computer Scientist 1. Los Angeles: Louisiana Board of Regents. 14–16
  4. Brock, G., Vasyl, P., Susmita, D., & Somnath, D. 2008. CValid: An R Package for Cluster Validation. Journal of Statistical Software. Vol. 25, No.4, 1–22
  5. [BPS] Badan Pusat Statistik. 2021. Indeks Pembangunan Manusia 2021 . Jakarta: Badan Pusat Statistik
  6. Gujarati, D. 2009. Dasar-Dasar Ekonometrika. Jakarta: Erlangga
  7. Hair, J. F., Anderson, R. E., Thatham, R. L., & Black, W. C. 2010. Multivariate Data Analysis Seventh Edition. New Jersey: Pearson Education Inc
  8. Han, J., & Kamber, M. 2006. Data Mining: Concepts and Techniques. San Fransisco: Elsevier Inc
  9. Kaufman, L., & Rousseeuw, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley Series in Probability and Statistics). New York: Wiley
  10. Kaur, N. K., Kakur, U., & Singh, D. 2014. K-Medoids Clustering Algorithm. International Journal of Computer Application and Technology (IJCAT). Vol.1, No.1
  11. Milligan, G., Cooper, M. 1985. An examination of procedures for determining the number of clusters in a data set. Psychometrika. Vol.50, No. 2, 159-179
  12. Nerukar, P., Pavate, A., Shah, M., & Jacob, S. 2019. Performance of Internal Cluster Validations Measures for Evolutionary Clustering. Computing, Communication and Signal Processing. Singapore: Springer Nature Singapore Pte Ltd. 305–312
  13. [PERPES] Peraturan Presiden. 2020. Peraturan Presiden tentang Penetapan Daerah Tertinggal Tahun 2020-2024 Nomor 63 Tahun 2020. Tersedia: https://peraturan.bpk.go.id/Home/Details/136563/perpres-no-63-tahun-2020 (diakses pada tanggal 6 Juni 2022)
  14. Rousseeuw, P. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Jornal of Computational and Applied Mathematics. Vol.20, 53–65
  15. Sembiring, R. 1995. Analisis Regresi. Bandung: Penerbit ITB
  16. Supranto, J. 2004. Analisis Multivariat : Arti dan Interpretasi. Jakarta: PT. Rineka Cipta
  17. Walpole, R.E., dan Myers, R.H. 1995. Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan Edisi ke-4. Bandung : Penerbit ITB
  18. Widarjono, A. 2010. Analisis Statistika Multivariat Terapan. Yogyakarta: UPP STIM YKPN

Last update:

No citation recorded.

Last update:

No citation recorded.