skip to main content

PERAMALAN PEREDARAN UANG KARTAL DI INDONESIA MENGGUNAKAN MODEL HYBRID SARIMAX-NEURAL NETWORK

*Handy Kurniawan Juliarto  -  Jurusan Matematika, Universitas Mulawarman, Jl. Barong Tongkok No 04, Gunung Kelua, Samarinda, Indonesia 75123, Indonesia
Ika Purnamasari  -  Laboratorium Statistika Ekonomi dan Bisnis, Jurusan Matematika, Universitas Mulawarman, Jl. Barong Tongkok No 04, Gunung Kelua, Samarinda, Indonesia 75123, Indonesia
Surya Prangga  -  Laboratorium Statistika Komputasi, Jurusan Matematika, Universitas Mulawarman, Jl. Barong Tongkok No 04, Gunung Kelua, Samarinda, Indonesia 75123, Indonesia
Open Access Copyright 2024 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stability in the economy is influenced by technological advancements, which impact the digitization of the economy and lead to an increasing demand for electronic and digital payment systems compared to physical currency. There are certain months, such as during year-end holidays, when the circulation of physical currency increases. This study purpose to forecasting the total currency circulation in Indonesia, considering the influence of calendar variations, using a hybrid method that combines SARIMAX and NN. The SARIMAX method was utilized to capture linear effects related to calendar variations, while the NN method was employed to capture nonlinear patterns. The analysis results indicated that the hybrid SARIMAX-NN model with 1 to 3 neurons yielded accurate forecasts, with Mean Absolute Percentage Error (MAPE) values below 2%. However, the highest accuracy was achieved by the SARIMAX-NN hybrid model with 1 neuron, which had a MAPE of 1.38%. Additionally, the forecasting results showed a consistent monthly increase, particularly during the holiday season in December

Fulltext View|Download
Keywords: Currency; Economy; Forecasting; Hybrid SARIMAX-NN

Article Metrics:

  1. Ahmad, I. S., Setiawan, Suhartono, & Masun, N. H. 2015. Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect. AIP Conference Proceedings, Vol. 1691 https://pubs.aip.org/aip/acp/article-abstract/1691/1/050002/588819/Forecasting-of-monthly-inflow-and-outflow-currency DOI: 10.1063/1.4937084
  2. Aswi & Sukarna. 2006. Analisis Deret. Makassar: Andira Publisher
  3. Bakti, I. S., Nirzalin, & Alwi. 2019. Konsumerisme Dalam Perspektif Jean Baudrillard. Jurnal Sosiologi USK, Vol. 13 https://jurnal.usk.ac.id/JSU/article/view/15925 DOI: 10.24815/JSU.V13I2.15925
  4. Cynthia, A., Sugiman, & Mastur, Z. 2016. Analisis Perbandingan Menggunakan Arima Dan Bootstrap Pada Peramalan Nilai Ekspor Indonesia. UNNES Journal of Mathematics, Vol. 5 https://journal.unnes.ac.id/sju/index.php/ujm/article/view/13102/7183 DOI: 10.15294/UJM.V5I1.13102
  5. Fiskin, C. S., & Cerit, A. G. 2019. Forecasting Domestic Shipping Demand of Cement: Comparison of SARIMAX, ANN and Hybrid SARIMAX-ANN. 4rd International Conference on Computer Science and Engineering: https://ieeexplore.ieee.org/abstract/document/8907210 DOI: 10.1109/UBMK.2019.8907210
  6. Hudiyanti, C. V., Bachtiar, F. A., & Setiawan, B. D. 2019. Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, Vol. 3 https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/4791 E-ISSN: 2548-964X
  7. Husnita, F., Wahyuningsih, S., & Nohe, D, A. 2015. Analisis Spektral dan Model ARIMA untuk Peramalan Jumlah Wisatawan di Dunia Fantasi Taman Impian Jaya Ancol. Jurnal Eksponensial, Vol. 6 https://fmipa.unmul.ac.id/files/docs/[3]%20JURNAL%20fiftria%20EDIT.docx
  8. Laga, A. P. B., Wahyuningsih, S., & Hayati, M. N. 2018. Peramalan Penjualan Pakaian dengan Autoregressive Integrated Moving Average with Exogeneous Input (ARIMAX) (Studi Kasus: Penjualan Pakaian di Toko M~Al Samarinda Tahun 2012 s.d 2016). Jurnal Eksponensial, Vol. 9 http://jurnal.fmipa.unmul.ac.id/index.php/exponensial/article/view/306 ISSN: 2798-3455
  9. Sari, I. P., Wuryandari, T., & Yasin, H. 2014. Prediksi Data Harga Saham Harian Menggunakan Feed Forward Neural Networks (FFNN) dengan Pelatihan Algoritma Genetika (Studi kasus pada Harga Saham Harian PT. XL Axiata Tbk). Jurnal Gaussian, Vol. 3 https://ejournal3.undip.ac.id/index.php/gaussian/article/view/6455 DOI: 10.14710/J.GAUSS.3.3.441-450
  10. Solikin & Suseno. 2002. Uang (Pengertiannya penciptaannya dan Peranannya dalam Perekonomian). Jakarta: Bank Indonesia
  11. Sugiyono. 2008. Statistika Untuk Penelitian, Cetakan Ketujuh. Bandung: CV. Alfabeta
  12. Suryani, A. R. et al. 2018. Peramalan Curah Hujan Dengan Metode Autoregressive Integrated Moving Average With Exogenous Input (Arimax). Unnes Journal of Mathematics, Vol. 7 https://journal.unnes.ac.id/sju/index.php/ujm/article/view/27386 DOI: 10.15294/UJM.V7I1.27386
  13. Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. New York: Pearson Education, Inc
  14. Zhang, P. G. 2003. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing, Vol. 50 https://www.sciencedirect.com/science/article/abs/pii/S0925231201007020 DOI: 10.1016/S0925-2312(01)00702-0

Last update:

No citation recorded.

Last update:

No citation recorded.