skip to main content

IMPLEMENTASI GRIDSEARCHCV PADA SUPPORT VECTOR REGRESSION (SVR) UNTUK PERAMALAN HARGA SAHAM

*Aanisah Waliy Ishlah  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stock is a sign of the capital participation of a person or authority in a company (PT). PT Anabatic Technologies Tbk (ATIC) is one of the service providers and IT consultants that is included in the technology sector, which is a new sector in the IDX-IC classification. ATIC stock trading was temporarily suspended due to a significant increase in cumulative prices. This indicates that stock prices tend to be volatile and non-linear. The Support Vector Regression (SVR) method can be used to predict stock prices. SVR is able to solve non-linear data problems by using kernel functions so it can overcome overfitting problems and will give good performance. The SVR problem is difficult to determine the optimal hyperparameters, so this research uses grid search cross validation (GridSearchCV). In this research, ATIC’s daily closing price data was used with 1007 training data and 252 testing data. The results show that the best model is SVR with a linear kernel and the hyperparameters used are Cost  and epsilon . The linear kernel SVR model produces a MSE of 0,001237173; SMAPE of 0,1167301; and  = 0,9206643

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
CTA-Aanisah Waliy Ishlah
Subject
Type Research Instrument
  Download (305KB)    Indexing metadata
Keywords: Stock; Support Vector Regression; GridSearchCV; Kernel; Prediction

Article Metrics:

  1. Abe, S. 2010. Support Vector Machines for Pattern Classification. London: Springer-Verlag
  2. Antony, E., Sreekanth, N. S., Kumar, R. K. S. & T, N. 2021. Data Preprocessing Techniques for Handling Time Series data for Environmental Science Studies. International Journal of Engineering Trends and Technology, 69(5), pp. 196-207
  3. Bursa Efek Indonesia. 2018. Saham. https://www.idx.co.id/produk/saham/
  4. Diakses: 21 Februari 2022
  5. Fadilah, W. R. U., Agfiannisa, D. & Azhar, Y. 2020. Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine. Fountain of Informatics Journal, 5(2), pp. 45-51
  6. Gujarati, D. 1999. Ekonometrika Dasar. Jakarta: Erlangga
  7. Han, J., Kamber, M. & Pei, J. 2012. Data Mining Concepts and Techniques. USA: Elsevier
  8. Hidayat, M. A. 2021. GridSearchCV. https://algotech.netlify.app/blog/gridsearchcv/#:~:text=GridSearchCV%20merupakan%20bagian%20dari%20modul,masing%20secara%20otomatis%20dan%20sistematis. Diakses: 22 Februari 2022
  9. Intan, K. 2021. Kembali Diperdagangkan, Saham Anabatic Technologies (ATIC) Melesat 24,86%. https://investasi.kontan.co.id/news/kembali-diperdagangkan-saham-anabatic-technologies-atic-melesat-2486. Diakses: 21 Februari 2022
  10. Makridakis, S., Wheelwright, S. C. & McGee, V. E. 1992. Metode dan Aplikasi Peramalan. Jakarta: Erlangga
  11. Maulana, N. D., Setiawan, B. D. & Dewi, C. 2019. Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus: Harum Bakery). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(3), pp. 2986-2995
  12. Nugroho, A. S., Witarto, A. B. & Handoko, D. 2003. Support Vector Machine: Teori dan Aplikasinya dalam Bioinformatika. Japan, Procceding of Indonesian Scientific Meeting
  13. Patriya, E. 2020. Implementasi Support Vector Machine Pada Prediksi Harga Saham Gabungan (IHSG). Jurnal Ilmiah Teknologi dan Rekayasa, 25(1), pp. 24-38
  14. Prabowo, H., Suhartono & Prastyo, D. D. 2020. The Performance of Ramsey Test, White Test and Terasvirta Test in Detecting Nonlinearity. INFERENSI, 3(1), pp. 1-12
  15. Purnama, D. I. & Hendarsin, O. P. 2020. Peramalan Jumlah Penumpang Berangkat Melalui Transportasi Udara di Sulawesi Tengah Menggunakan Support Vector Regression (SVR). Jambura Journal of Mathematics, Juli, 2(2), pp. 49-59
  16. Santosa, B. 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Yogyakarta: Graha Ilmu
  17. Saputra, G. H., Wigena, A. H. & Sartono, B. 2019. Penggunaan Support Vector Regression dalam Pemodelan Indeks Saham Syariah Indonesia dengan Algoritme Grid Search. Indonesian Journal of Statistics and Its Applications, 3(2), pp. 148-160
  18. Wang, X., Gong, G. & Li, N. 2019. Automated Recognition of Epileptic EEG States Using Automated Recognition of Epileptic EEG States Using, Gradient Boosting Machine, and Grid Search Optimizer. Sensors, 19(219), pp. 1-18

Last update:

No citation recorded.

Last update:

No citation recorded.