skip to main content

PERAMALAN HARGA BERAS PREMIUM BULANAN DI TINGKAT PENGGILINGAN MENGGUNAKAN FUZZY TIME SERIES MARKOV CHAIN

*Virgania Sari  -  Program Studi Pendidikan Matematika, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Semarang, Gedung D7 lantai 1 FMIPA Universitas Negeri Semarang, Kampus Sekaran, Gunungpati Semarang Kode Pos 50229., Indonesia
Sylvia Ayu Hariyanto  -  Institut Teknologi Statistika dan Bisnis Muhammadiyah Semarang, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Rice is one of the crucial food commodities in Indonesia whose price fluctuates every year. Forecasting is the science of predicting an event in the future and predicting future conditions using historical data. One of the forecasting methods is the Fuzzy Time Series which is used to predict time series data that can be widely used on any real time data. This research used forecasting with the Fuzzy Time Series Markov Chain method because this method provides a good accuracy value. The historical data used is monthly data on the average price of premium rice at the Indonesian mill level for the period January 2014-July 2022 then divided into training data and testing data. The error rate used is MAPE and the results of calculations with Fuzzy Time Series Markov Chain on data testing the period November 2020-July 2022 obtained a very good MAPE value of 0.81%. Forecasting results for the period August 2022 obtained the results of Rp. 9.627,99
Fulltext View|Download
Keywords: Forecasting; Fuzzy; Marcov Chain; Harga Beras Premium

Article Metrics:

  1. Fajari, D. A., Abyantara, M. F., & Lingga, H. A. (2021). Peramalan Rata-Rata Harga Beras Pada Tingkat Perdagangan Besar Atau Grosir Indonesia Dengan Metode Sarima (Seasonal Arima). Jurnal Agribisnis Terpadu, 14(1), 88. https://doi.org/10.33512/jat.v14i1.11460
  2. Hansun, S., & Nusantara, U. M. (2012). Peramalan Data IHSG Menggunakan Fuzzy Time Series 1. 6(2), 79–88
  3. Lestari, Nofinda; Wahyuningsih, N. (2012). Peramalan Kunjungan Wisata dengan Pendekatan Model SARIMA (Studi kasus : Kusuma Agrowisata). Jurnal Sains Dan Seni ITS, 1(Vol 1, No 1 (2012): Jurnal Sains dan Seni ITS (ISSN 2301-928X)), A29–A33
  4. Makridakis, Spyros. (1993). Metode dan Aplikasi Peramalan. Jilid 1. Edisi Pertama. (Terjemahan: Untung S, Andrianto). Jakarta: Erlangga
  5. Margi S, K., & Pendawa, S. (2015). Analisa Dan Penerapan Metode Single Exponential Smoothing Untuk Prediksi Penjualan Pada Periode Tertentu (Studi Kasus: PT.Media Cemara Kreasi). Prosiding SNATIF, 1998, 259–266
  6. Muhammad, M. (2016). Sebaran Dan Peramalan Mahasiswa Baru Pendidikan Matematika Universitas Muhammadiyah Purwokerto Dengan Metode Time Invariant Fuzzy Time Series. Matematika Jurnal, 3(2), 48–58
  7. Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction Time Series Analysis and Forecasting. 671
  8. Ratnawati, Martaleli, B. and Nola, R. (2019). Prediksi Harga Beras dengan Metode Fuzzy Time Series Menggunakan Model Chen dan Markov Chain (Studi Kasus: Kota Tanjungpinang). Thesis, Universitas Maritim Raja Ali Haji
  9. Sihombing, P. R., & Arsani, A. M. (2021). Comparison of Machine Learning Methods in Classifying Poverty in Indonesia in 2018. Jurnal Teknik Informatika (Jutif), 2(1), 51–56. https://doi.org/10.20884/1.jutif.2021.2.1.52
  10. Song, Q., & Chissom, B., (1993). Forecasting Enrollments with Fuzzy Time Series Part 1. Fuzzy Sets and System, (54), 1-9
  11. Sukiyono, Ketutdan Rosdiana. (2017). Pendugaan Model Permalan Harga Beras Pada Tingkat Grosir. Universitas Bengkulu
  12. Tsaur, R.-C. (2012). A Fuzzy Time Series-Markov Chain Model With An Application To Forecast The Exchange Rate Between The Taiwan And Us Dollar. Journal, International Computing, Innovative, 8(7), 4931–4942
  13. www.bps.go.id. (1 Agustus 2023). Berita Resmi Statistik: Perkembangan Nilai Tukar Petani dan Harga Produsen Gabah Juli 2023. Diakses pada 12 Agustus 2023, dari https://www.bps.go.id/pressrelease/2023/08/01/1992/nilai-tukar-petani--ntp--juli-2023-sebesar-110-64-atau-naik-0-21-persen--harga-gabah-kering-panen-di-tingkat-petani-naik-1-55-persen-dan-harga-beras-premium-di-penggilingan-naik-0-11-persen-.html

Last update:

No citation recorded.

Last update:

No citation recorded.