slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PERBANDINGAN MODEL ARIMA DENGAN MODEL NONPARAMETRIK POLINOMIAL LOKAL DAN SPLINE TRUNCATED UNTUK PERAMALAN HARGA MINYAK MENTAH WEST TEXAS INTERMEDIATE (WTI) DILENGKAPI GUI R | Gusman | Jurnal Gaussian skip to main content

PERBANDINGAN MODEL ARIMA DENGAN MODEL NONPARAMETRIK POLINOMIAL LOKAL DAN SPLINE TRUNCATED UNTUK PERAMALAN HARGA MINYAK MENTAH WEST TEXAS INTERMEDIATE (WTI) DILENGKAPI GUI R

*Salsabila Rizkia Gusman  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Agus Rusgiyono  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Crude oil as one of the most important natural resources experiences price fluctuations from time to time, even the spot price of West Texas Intermediate (WTI) world crude oil on 20th April 2020 reached -36,98 USD/barrel due to the Covid-19 pandemic. WTI oil price data was modeled using the ARIMA method, local polynomial, and spline truncated nonparametric regression then compared and obtained the best model and formed R Graphical User Interface (GUI). The ARIMA model and nonparametric time series models can be used to model time series data, but in the ARIMA model there are assumptions that must be fulfilled. Nonparametric time series models, which include local polynomial model and truncated spline do not need to fulfill these assumptions. The ARIMA model obtained did not fulfilled the assumptions of normality and residual homoscedasticity, so the modeling was stopped and modeling was only carried out using nonparametric regression methods. Based on the minimum MSE criteria, the best nonparametric model was obtained, namely nonparametric truncated spline model with degrees 3 and 3 knot points which was categorized as a strong model based on R-squared in sample value and having a very good forecasting ability based on MAPE out sample value.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (19KB)    Indexing metadata
Keywords: Crude oil; WTI; Local Polynomial; Spline Truncated; ARIMA; GUI.

Article Metrics:

  1. Beeley, C. (2013). Web application with R using Shiny. Birmingham: Packt Publishing Ltd
  2. Budiantara, I. N. (2005). Model Keluarga Spline Polinomial Truncated dalam Regresi Semiparametrik. Berkala Ilmiah MIPA, 15(3), 55–61
  3. Chen, R. J. C., Bloomfield, P., dan Fu, J. S. (2003). An evaluation of alternative forecasting methods to recreation visitation. Journal of Leisure Research, 35(4), 441–454
  4. Eubank, R. L. (1999). Nonparametric Regression and Spline Smoothing Second Edition. New York: Marcel Dekker, Inc
  5. Fan, J., dan Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. London: Chapman & Hall
  6. Faozi, S., dan Sulistijanti, W. (2016). Peramalan Harga Minyak Mentah Standar West Texas Intermediate dengan Pendekatan Metode ARIMA. Seminar Nasional Pendidikan Sains dan Teknologi, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Muhammadiyah Semarang, 308–316
  7. Hardle, W. (1991). Smoothing Techniques With Implementation in S. New York: Springer-Verlag
  8. Ramadani, K. (2021). Pemodelan Harga Minyak West Texas Intermediate Menggunakan Model ARIMA, ARFIMA, Fuzzy Time Series Markov Chain dan Hybrid ARIMA-FTSMC. PhD Thesis. Universitas Andalas Padang
  9. Sanchez, G. (2013). PLS Path Modeling with R. Berkeley: R Package Notes
  10. Suparti, Santoso, R., Prahutama, A., dan Devi, A. R. (2018). Regresi Nonparametrik. Ponorogo: Wade Group
  11. Takezawa, K. (2006). Introduction to Nonparametric Regression. New Jersey: John Wiley & Sons, Inc
  12. Tarno. (2013). Kombinasi Prosedur Pemodelan Subset Arima Dan Deteksi Outlier Untuk Prediksi Data Runtun Waktu. Prosiding Seminar Nasional Statistika Universitas Diponegoro, 1970, 583–592
  13. Wei, W. W. S. (2006). Time Series Analysis Univariate and Multivariate Methods Second Edition. New York: Pearson Education, Inc
  14. Wu, H., dan Zhang, J. T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. New Jersey: John Wiley & Sons, Inc

Last update:

No citation recorded.

Last update:

No citation recorded.