skip to main content

PEMODELAN DATA LONGITUDINAL MENGGUNAKAN REGRESI POLINOMIAL LOKAL PADA KELOMPOK SAHAM PERUSAHAAN PENYEDIA JASA TELEKOMUNIKASI DENGAN GUI R

*Gustyas Zella Noer Rachma  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Undip, Indonesia
Open Access Copyright 2023 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The economic development of a country can be seen based on the capital market that was growing and developing. One of the most popular capital market instruments is stocks. Stocks based on market capitalization groups include longitudinal data. One of the statistical methods for longitudinal data modelling is nonparametric regression which has no modelling assumptions requirement. This research models monthly stock prices using a nonparametric local polynomial method with the selection of the best model which has minimum value of Mean Square Error (MSE). The data was divided into 2 parts, namely in sample data from November, 2018 to June, 2021 to form a model and out sample data from July, 2021 to February, 2022 used for evaluation of model performance by Mean Absolute Percentage Error (MAPE) values. The best model is the local polynomial model with Biweight kernel function of degree 5, local point of 4, bandwidth of 37, and MSE value of 0.03481085. MAPE out sample of data value is 31.13%, which indicating that the model has sufficient forecasting. In this research arrange Graphical User Interface (GUI) by using R software with shiny package is built to make display output data analyzing more easy and more interactive.

Fulltext View|Download
Keywords: Stocks; Longitudinal Data; Local Polynomial; MSE; GUI

Article Metrics:

  1. Budiantara, I. N., 2009. Spline dalam Regresi Nonparametrik dan Semiparametrik: Sebuah Pemodelan Statistika Masa Kini dan Masa Mendatang. Surabaya: Institut Teknologi Sepuluh November (ITS)
  2. Chang, P.-C., Wang, Y.-W., & Liu, C.-H. 2007. The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Expert Systems with Application, 32(88–89)
  3. Eubank, R. L., 1999. Nonparametric Regression and Spline Smoothing. Texas: Departement of Statistics Southern Methodist Dallas University
  4. Fan, J. dan Gijbels, I., 1997. Local Polynomial Modelling and Its Apllications. London: Chapman and Hall
  5. Gujarati, D., 2003. Basic Econometrics. New York: Mc.Graw-Hill
  6. Hadi, N., 2013. Pasar Modal: Acuan Teoritis dan Praktis Investasi di Keuangan Pasar Modal. Yogyakarta: Graha Ilmu
  7. Khalid, I., 2015. PEMODELAN REGRESI NONPARAMETRIK DATA LONGITUDINAL MENGGUNAKAN POLINOMIAL LOKAL (Studi Kasus: Harga Penutupan Saham pada Kelompok Harga Saham Periode Januari 2012 – April 2015). Gaussian, 4(3), pp. 527-532
  8. Makridakis, Wheelwright & Mcgee, 1995. Metode dan Aplikasi Peramalan. Jakarta: Erlangga
  9. Mulyadi, S. (2009). Matriks Kuasidefinit. Institut Pertanian Bogor
  10. Ogden, R. T., 1997. Essential Wavelets for Statistical Applications and Data Analysis. Boston: Birkhauser
  11. Purnomo, D., S., Serfiyani, C. Y. & Haryani, I., 2013. Buku Pintar: Pasar Uang dan Pasar Valas. Jakarta: Kompas Gramedia
  12. Suparti, dan Prahutama, A. 2016. Pemodelan Regresi Nonparametrik Menggunakan Pendekatan Polinomial Lokal Pada Beban Listrik Di Kota Semarang. Media Statistika, 9(2), 85–93
  13. Widarjono, A., 2010. Analisis Statistika Multivariate Terapan. Yogyakarta: UPP STIM YKPN
  14. Wu, H. dan Zhang, J.-T., 2006. Nonparametrik Regression Methods for Longitudinal Data Analysis. New York: John Wiley and Sons,Inc

Last update:

No citation recorded.

Last update:

No citation recorded.