skip to main content

PENGELOMPOKAN PROVINSI DI INDONESIA BERDASARKAN INDIKATOR KESEHATAN LINGKUNGAN MENGGUNAKAN METODE PARTITIONING AROUND MEDOIDS DENGAN VALIDASI INDEKS INTERNAL

*Diah Aliyatus Saidah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Rukun Santoso  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Environmental health is an important aspect in efforts to achieve public health. The condition of environmental health in Indonesia is varies in each province, so the priorities for increasing environmental health are also different. This study aims to grouping provinces in Indonesia based on environmental health indicators in order to know the high/low environmental quality in each province to assist the government in optimizing environmental health efforts. The grouping of provinces is done partitioning around medoids method which is robust to data containing outliers. The measure of similarity objects is calculated using the Euclidean and Manhattan distances, the selection of the best number of clusters is done by validating the internal index, namely the Calinski-Harabasz index, Baker-Hubert index, silhouette index, C-index, and Davies-Bouldin index. The result of this study is that the best number of clusters are two clusters using the Manhattan distance measurement method, with the largest Calinski-Harabasz index value = 24.10072, the largest Baker-Hubert index = 0.8466251, the largest silhouette index = 0.4246581, the smallest C-index = 0.07290109, and the smallest Davies-Bouldin index = 1.094805.
Fulltext View|Download
Keywords: Environmental Health; Cluster Analysis; Partitioning Around Medoids; Internal Index

Article Metrics:

  1. Anderberg, M. 1973. Cluster Analysis for Application. New York: Academic Press
  2. Baarsch, J., & Celebi, M. E. 2012. Investigastion of Internal Validity Measures for K-Means Clustering. International Multiconference of Engineers and Computer Scientist 1. Los Angeles: Louisiana Board of Regents. 14–16
  3. Baker, F., & Hubert, L. 1975. Measuring the Power of Hierarchical Cluster Analysis. Journal of the American Statistical Association. Vol. 70, 31-38
  4. [BPS] Badan Pusat Statistik. 2018. Indikator Perumahan dan Kesehatan Lingkungan Tahun 2018. Jakarta: Badan Pusat Statistik
  5. Brock, G., Vasyl, P., Susmita, D., & Somnath, D. 2008. CValid: An R Package for Cluster Validation. Journal of Statistical Software. Vol. 25, No.4, 1–22
  6. Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. 2014. Nbclust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software. Vol. 61, No.6, 1–36
  7. Charrad, M., Lechevallier, Y., Ahmed, M. B., & Saporta, G. 2010. On the Number of Clusters in Block Clustering Algorithms. Proceedings of the 23rd International Florida Artificial Intelligence Research Society Conference, FLAIRS-23. 392–397
  8. Davies, D. L., & Bouldin, D. W. 1979. A Cluster Separation Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence
  9. Gujarati, D. 2009. Dasar-Dasar Ekonometrika. Jakarta: Erlangga
  10. Hair, J. F., Anderson, R. E., Thatham, R. L., & Black, W. C. 2010. Multivariate Data Analysis Seventh Edition. New Jersey: Pearson Education Inc
  11. Han, J., & Kamber, M. 2006. Data Mining: Concepts and Techniques. San Fransisco: Elsevier Inc
  12. Jobson, J. D. 1992. Applied Multivariate Data Analysis-Second Volume: Categorical and Multivariate Method. New York: Springer-Verlag Inc
  13. Kaufman, L., & Rousseeuw, P. J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis (Wiley Series in Probability and Statistics). New York: Wiley
  14. [KEMENKES RI] Kementerian Kesehatan Republik Indonesia. 2019. Profil Kesehatan Indonesia Tahun 2019. Jakarta: Kementerian Kesehatan Republik Indonesia
  15. Mundiatun, & Daryanto. 2015. Pengelolaan Kesehatan Lingkungan. Yogyakarta: Gava Media
  16. Rousseeuw, P. 1987. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Jornal of Computational and Applied Mathematics. Vol.20, 53–65
  17. Usman, H., & Sobari, N. 2013. Aplikasi Teknik Multivariat. Jakarta: Rajawali Pers
  18. Widarjono, A. 2010. Analisis Statistika Multivariat Terapan. Yogyakarta: UPP STIM YKPN

Last update:

No citation recorded.

Last update:

No citation recorded.