skip to main content

ANALISIS LAJU PERBAIKAN KONDISI KLINIS PASIEN COVID-19 DENGAN MENGGUNAKAN PENDEKATAN MULTIPLE PERIOD LOGIT (Studi Kasus: Penderita COVID-19 yang Menjalani Rawat Inap di RSUD Depok Pada September 2021)

*Viona Alliza Diandra Putri  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Triastuti Wuryandari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract
Coronavirus Disease-2019, known as Covid-19, is one of infectious diseases that occurred in Wuhan and named as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV 2). This infectious disease is caused by a type of virus groups which can cause disease in animals or humans called Coronavirus. The quality of patient treatment can be seen from time that the patient needs to have clinical improvement and able to get out of the hospital. Survival analysis is a statistical procedure to analyse data with time until a certain event occurs as a response variable One of the methods that can be used is Logit Regression with multiple period logit approach. This research discusses the rate of clinical condition improvement of Covid-19 patients using survival analysis with multiple period logit approach. This logit approach called multiple period logit is used because the predictor variable in this research can change at any time until an event occurs. This research data obtained from medical records at RSUD Depok which are Covid-19 patient data who have been hospitalized in September 2021. The dependent variables consist of the hospitalization length and patient status (cured or censored), while the independent variables consist of age, gender, symptoms, systolic blood pressure, diastolic blood pressure, number of pulse rates, respiration, temperature, saturation, comorbid conditions, and smoking. The data consist of 68 patients which 53 patients go home in better condition. The results of analysis using multiple period logit approach obtained factors that affect the rate of clinical condition improvement of Covid-19 patients, there are age, symptoms, respiration, and congenital disease
Fulltext View|Download
Keywords: Covid-19; Multiple Period Logit; Survival

Article Metrics:

  1. Collett, D. 2003. Modelling survival data in Medical Research Second Edition. USA: Chapman & Hall/CRC
  2. Danardono. 2012. Analisis Data Survival. Diktat Kuliah: Fakultas Matematika dan Ilmu Pengetahuan Alam, UGM, Yogyakarta
  3. Efron, B. 1988. Logistic Regression, Survival Analysis, and The Kaplan-Meier Curve. Jornal of the American Statistical Association Vol. 83, No. 402: pp. 414–425
  4. Hosmer, D. W., & Lemeshow, S. 2000. Applied Survival Analysis Regression Modelling of Time to Event Data. A John Wiley and Sons, Inc. https://books.google.rw/books?id=HVS9QAAACAAJ&printsec=copyright#v=onepage&q&f=false
  5. Kleinbaum, D. G., & Klein, M. 2012. Survival Analysis: A Self-Learning Text. In Springer (3rd Edition). New York: Springer
  6. Lestari, H. N., Prastyo, D. D., & Winahyu, W. S. 2016. Analisis Survival Laju Perbaikan Klinis Pasien Penyakit Jantung Koroner di RSUD dr. Soetomo Surabaya dengan Pendekatan Multiple Period Logit. Jurusan Statistika, Fakultas MIPA, Institut Teknologi Sepuluh Nopember (ITS), pp. 1–6
  7. Maruddani, D.A.I., Tarno, Hoyyi, A., Rahmawati, R., dan Wilandari, Y. 2021. Survival Analysis. Semarang: UNDIP Press Semarang
  8. Shumway, T. 2001. Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business Vol. 74, No. 1: pp. 101–124
  9. World Health Organization. 2021. Pertanyaan dan jawaban terkait Coronavirus. Www.Who.Int. https://www.who.int/indonesia/news/novel-coronavirus/qa/qa-for-public. Diakses: 5 Oktober 2021

Last update:

No citation recorded.

Last update:

No citation recorded.