BibTex Citation Data :
@article{J.Gauss35458, author = {Salma Innassuraiya and Tatik Widiharih and Iut Utami}, title = {ANALISIS KLASIFIKASI MENGGUNAKAN METODE REGRESI LOGISTIK BINER DAN BOOTSTRAP AGGREGATING CLASSIFICATION AND REGRESSION TREES (BAGGING CART) (Studi Kasus: Nasabah Koperasi Simpan Pinjam Dan Pembiayaan Syariah (KSPPS))}, journal = {Jurnal Gaussian}, volume = {11}, number = {2}, year = {2022}, keywords = {KSPPS; Binary Logistic Regression; CART; BAGGING CART; Accuracy; APER; Press’s Q,;Specificity}, abstract = { The Save Loan and Sharia Financing Cooperatives (KSPPS) is a financial institution that offers deposits, loans, and financing to its members while adhering to Islamic sharia rules. Customers payment behaviour is influenced by their background differences, such as age, gender, occupation, and so on. The classification method is used to determine the characteristics of members who are currently in arears or are stuck in arears. Binary Logistic Regression and Bootstrap Aggregating Classification and Regression Trees were utilized as classification methods (BAGGING CART). A Logistic Regression with binary response variables is known as a Binary Logistic Regression. By resampling 50 times, the technique with the BAGGING process is used to improve the performance of the classification using CART. Customer data from one of the KSPPS in Central Java in 2021 was used in this investigation. Gender, age, marital status, employment, education level, time period, and income were the independent variables in this study, whereas payment status was the dependent variable (not stuck and stuck). The Binary Logistic Regression approach had an accuracy of 78.67 percent with an APER 21.33 percent, a Press's Q of 24.65, and a specificity of 98.30 percent, according to the classification accuracy statistics. The accuracy of the classification produced by CART with an accuracy value of 77.33 percent with an APER 22.67 percent, the value of Press's Q is 22,413, and specificity is 94.91 percent, then approached by BAGGING process the accuracy of the resulting classification by predicting data testing accuracy value of 78.67 percent with an APER 21.33 percent, press's Q value of 24.65, and specificity of 96.61 percent. Based on these findings, it can be inferred that using the BAGGING process can increase the CART method's performance to the point where it is nearly as good as Binary Logistic Regression, which has a slightly higher classification accuracy }, issn = {2339-2541}, pages = {183--194} doi = {10.14710/j.gauss.v11i2.35458}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/35458} }
Refworks Citation Data :
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics