skip to main content

ANALISIS CLUSTER TERHADAP INDIKATOR DATA SOSIAL DI PROVINSI NUSA TENGGARA TIMUR MENGGUNAKAN METODE SELF ORGANIZING MAP (SOM)

*Nurul Imani  -  Fungsi Statistik Distribusi, Badan Pusat Statistik Kabupaten Sumba Timur, Indonesia
Achmad Isya Alfassa  -  Program Studi Doktor Kependudukan Sekolah Pascasarjana Universitas Gadjah Mada, Indonesia
Anne Mudya Yolanda orcid scopus  -  Program Studi Statistika, Jurusan Matematika, Universitas Riau, Indonesia
Open Access Copyright 2022 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The Human Development Index (HDI) is used to assess the quality of life in a given area. In general, the HDI of Nusa Tenggara Timur (NTT) Province increased by 0.88 percent per year from 2011 to 2020 and fell by 0.06 percent in 2019-2020. The characteristics of the current situation of HDI in all districts/cities in NTT were defined using 9 variables in this study. The goal of this study is to combine clustering analysis with a Self-Organizing Map (SOM). Based on the analysis, it was found that NTT has four clusters based on HDI, with clusters 1, 2, 3, and 4 having 16, 3, 2, and 1 member(s) respectively. The cluster findings are meant to be utilized as a guide by the government when developing public policy or making decisions, given the seriousness of the Covid-19 pandemic. These findings could be used to address social issues in NTT, as well as be supported by beneficial policies.

Fulltext View|Download
Keywords: HDI, Self Organizing Map, Clustering, Nusa Tenggara Timur, Social Indicator

Article Metrics:

  1. Alfassa, A.I., 2018. Aplikasi Self Organizing Maps dan Webgis dengan menggunakan R dan QGIS untuk Analisis Kependudukan 100 Negara di Dunia. Universitas Islam Indonesia
  2. Alfassa, A.I., Kesumawati, A., 2020. Segmentation of Karhutla Hotspot Point of Indragiri Hilir Regency 2015 and 2016 using Self Organizing Maps ( Soms ), in: Proceedings Ofthe International Conference on Mathematics and Islam (ICMIs 2018). UIN Mataram Indonesia and ADMAPETA (Asosiasi dosen matematika dan pendidikan/Tadris Matematika), Mataram, Indonesia, pp. 336–341. https://doi.org/10.5220/0008521603360341
  3. Badan Pusat Statistik, 2021. Indeks Pembangunan Manusia (IPM) Tahun 2020 1–9
  4. Badan Pusat Statistik, 2015. Indeks Pembangunan Manusia 2014: Metode Baru. Badan Pusat Statistik Republik Indonesia, Jakarta
  5. Badan Pusat Statistik NTT, 2021. Hasil Survei Sosial Demografi Dampak Covid-19 Nusa Tenggara Timur 2020, in: Christiani, N.V. (Ed.), . Badan Pusat Statisti Provinsi Nusa Tenggara Timur, Kupang
  6. Firman, F., Rahman, S.R., 2020. Pembelajaran Online di Tengah Pandemi Covid-19. Indones. J. Educ. Sci. 2, 81–89
  7. Kashi, R.Y., Sulhaerati, Maulina, G., Septian, Y.D., Alfassa, A.I., Widodo, E., 2018. Analisis Cluster Terhadap Data Imunisasi Polio Di Indonesia Tahun 2016 Menggunakan Metode Self Organizing Maps (SOMS). Pros. Konf. Nas. Penelit. Mat. dan Pembelajarannya III 3, 657–663
  8. Kiha, E.K., Seran, S., Lau, H.T., 2021. Pengaruh Jumlah Penduduk, Pengangguran, Dan Kemiskinan Terhadap Indeks Pembangunan Manusia (IPM) Di Kabupaten Belu. Intelektiva J. Ekon. Hum. 2, 60–84
  9. Kurniasih, E.P., 2020. Dampak Pandemi Covid-19 Terhadap Penurunan Kesejahteraan Masyarakat Kota Pontianak. Pros. Semin. Akad. Tah. Ilmu Ekon. dan Stud. Pembang. 2020 277–289
  10. Larose, D.T., 2004. Discovering Knowledge in Data: An Introduction do Data mining. John Wiley&Sons Inc., USA
  11. Mulia, R.A., Saputra, N., 2020. Analisis Faktor-Faktor Yang Mempengaruhi Kesejahteraan Masyarakat Kota Padang. J. El-Riyasah J. Kepemimp. dan Adm. 11, 67–83
  12. Mushonnif, A., 2019. Pengelompokan Kabupaten/Kota di Jawa Timur Berdasarkan Indikator Indeks Pembangunan Manusia Menggunakan SOM. INDEXIA Inform. Comput. Intell. J. 1, 14–21
  13. Prasetyo, E., 2012. Data Mining : Konsep dan Aplikasi Menggunakan Matlab. CV Andi Offset, Yogyakarta
  14. Pujaningsih, N.N., Sucitawathi, I.G.A.A.D., 2020. Penerapan Kebijakan Pembatasan Kegiatan Masyarakat (PKM) dalam Penanggulangan Wabah Covid-19 di Kota Denpasar. Moderat J. Ilm. Ilmu Pemerintah. 6, 458–470
  15. Shieh, S.-L., Liao, I.-E., 2012. A new approach for data clustering and visualization using self-organizing maps. Expert Syst. with Appl. J. 39, 11924–11933
  16. Siahaan, M., 2020. Dampak Pandemi Covid-19 Terhadap Dunia Pendidikan. J. Kaji. Ilm. 1, 73–80
  17. Wicaksono, A.S., Yolanda, A.M., 2021. Pengelompokkan Kabupaten / Kota di Provinsi Nusa Tenggara Timur Berdasarkan Indikator Indeks Pembangunan Manusia Menggunakan K-Medoids Clustering. JSTAR J. Stat. Terap. 1, 79–90. https://doi.org/10.5300/jstar.v1i1.7

Last update:

No citation recorded.

Last update:

No citation recorded.