skip to main content

PEMODELAN HARGA EMAS DUNIA MENGGUNAKAN METODE NONPARAMETRIK POLINOMIAL LOKAL DILENGKAPI GUI R

*Jody Hendrian  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Investing in gold is a flexible choice because it can be sold at any time and used as an emergency fund. Investors should have the knowledge to predict data from time to time to achieve investment goals. One of the statistical methods for time series data modeling is ARIMA. The ARIMA model is strict with the assumptions that the data must be stationary, the residuals must be normally distributed, independent, and with constant variance, so an alternative model is proposed, namely nonparametric regression model, which has no modeling assumptions requirement. In this study, the daily world gold price data will be modeled using a local polynomial nonparametric model as an alternative because the assumptions in the ARIMA are not fulfilled. The data is divided into 2 parts, namely in sample data from January 2, 2020 to November 30, 2020 to form a model and out sample data from December 1, 2020 to December 31, 2020 used for evauation of model performance based on MAPE values. The chosen best model is the local polynomial model with Gaussian kernel function of degree 5, bandwidth of 373, and local point of 1744 with an MSE value of 482.6420. The local polynomial model out sample data MAPE value is 0.61%, indicating that the model has excellent forecasting capability. In this study, Graphical User Interface (GUI) using R software with the help of shiny package is also built, making data analyzing easier and generating more interactive display output.

 

Fulltext View|Download
Keywords: Gold, Local Polynomial, ARIMA, MSE, GUI

Article Metrics:

  1. Chang, P.-C., Wang, Y.-W., & Liu, C.-H. 2007.The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Expert Systems with Application, 32(88–89)
  2. Eubank, R. L. 1988. Nonparametric Regression and Spline Smoothing. New York: Marcell dekker, Inc
  3. Fan, J., & Gijbels, I. 1996. Local Polynomial Modelling and Its applications: Monographs on Statistics and Applied Probability 66. London: Chapman and Hall
  4. Hair, J. F., Hult, G., Ringle, C. M., & Sartedt, M. 2017. A Primer on Partial Least Squares Structural Equation Model (PLS-SEM) (2nd ed.). USA: SAGE Publications, Inc
  5. Hardle, W. 1991. Smoothing Techniques with Implementation in S. New York: Springer Verlag
  6. Hardle, W. & Linton, O. 1994. Applied Nonparametric Methods. Handbook of Econometrics, 9(2), 2295-2339
  7. Izati, N. A., Warsito, B., & Widiharih, T. 2019. Prediksi Harga Emas Menggunakan Feed Forward Neural Network dengan Metode Extreme Learning Machine. Jurnal Gaussian, 8(2), 171–183
  8. Montgomery, D. C., & Runger, G. C. 2003. Applied Statistics and Probability for Engineers. New Jersey: John Wiley & Sons,Inc
  9. Soejoeti, Z. 1987. Analisis Runtun Waktu. Karunia Jakarta
  10. Suparti, & Prahutama, A. 2016. Pemodelan Regresi Nonparametrik Menggunakan Pendekatan Polinomial Lokal Pada Beban Listrik Di Kota Semarang. Media Statistika, 9(2), 85–93
  11. Tarno. 2013. Kombinasi Prosedur Pemodelan Subset ARIMA dan Deteksi Outlier untuk Data Runtun Waktu. Prosiding Seminar Nasional Statistika Universitas Diponegoro. 583–592
  12. Tirta, I. M. 2014. Pengembangan E-Modul Statistika Terintegrasi dan Dinamik dengan R-Shiny dan mathJax. Prosiding Seminar Nasional Matematika, 223–232
  13. Wei, W. W. .1989. Time Series Analysis: Univariate and Multivariate Methods. Canada: Addison Wesley Publishing Company

Last update:

No citation recorded.

Last update:

No citation recorded.