skip to main content

PENERAPAN METODE WAVELET NEURO-FUZZY SYSTEM (WNFS) DALAM MEMPREDIKSI HARGA BERAS DUNIA (Studi Kasus: Harga Beras Thailand sebagai Harga Acuan Dunia)

*Sri Endah Moelya Artha  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Budi Warsito  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Rice trade is one of the food resistance components in terms of its availability. The comprehensive integration between international commodity rice prices and domestic prices encourage the prediction of world rice prices, using the Thai rice price as the world's reference price. In this study, the wavelet neuro-fuzzy system which combines the wavelet transform and the neuro-fuzzy technique has been applied to monthly predict the world rice price. The observed monthly rice price data are decomposed into some sub-series components by maximal overlap discrete wavelet transform (MODWT), and then the appropriate sub-series that have higher correlation to the real data are used as inputs of the neuro-fuzzy model for monthly predicting world rice prices for six months in advance. The neuro-fuzzy model is begun with determining the membership value of each data using Fuzzy C-Means, followed by fuzzy inference procedure of the Sugeno zero-order model. Obtained results showed that the WNFS method can be used to predict the world rice price, with the error value resulted from learning process of MSE 20,69097 and MAPE 0,65584%. While the error measurement results for the six months in advance prediction shows the acquisition of MSE 3610,14847 and MAPE 13,62334%.

 

Keywords : Prediction of Monthly World Rice Price, Maximal Overlap Discrete Wavelet Transform, Neuro-fuzzy System.

Fulltext View|Download
Keywords: Prediction of Monthly World Rice Price, Maximal Overlap Discrete Wavelet Transform, Neuro-fuzzy System.

Article Metrics:

  1. Haghpanahan, H. 2014. Essays on Exchange Rates Behaviour. Disertasi University of Leicerster
  2. Lin, C. T., dan Lee, C. S. G. 1996. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. New Jersey: Prentice Hall
  3. Makridakis,S., Wheelwright, S. C., dan McGee, V. E. 1999. Metode dan Aplikasi Peramalan. Jakarta: Binarupa Aksara
  4. Ogden, R.T. 1997. Essential Wavelets for Statistical Applications and Data Analysis. Boston: Birkhauser
  5. Partal, T., dan Kisi, O. 2011. Wavelet and Neuro-Fuzzy Conjunction Model for Streamflow Forecasting. Journal of Hidrology, 447-456
  6. Percival, D. B, dan Walden, A. T. 2000. Wavelet Methods for Time Series Analysis 1st Published. New York: Cambrige University Press
  7. Setiaji, A. 2014. Aplikasi Model Wavelet Neuro Fuzzy untuk Memprediksi Nilai Tukar Euro terhadap Dollar Amerika. Jurnal Matematika Universitas Negeri Yogyakarta, Edisi V, Volume III
  8. Simatupang, E. D, Suparti, dan Rahmawati, R. 2014. Kajian Model Inflasi Tahunan Kota Sibolga dengan ARIMA dan Pendekatan Regresi Polinomial pada Analisis Multiresolusi Wavelet. Jurnal Gaussian, Volume 3, Nomor 2, 213-222
  9. The World Bank. 2011. Perkembangan, Pemicu, dan Dampak Harga Komoditas: Implikasinya terhadap Perekonomian Indonesia. Laporan Pengembangan Sektor Perdagangan
  10. Zimmermann, H. J. 2001. Fuzzy Set Theory and Its Applications, 4th Edition. Massachusetts: Kluwer Academic Publisher

Last update:

No citation recorded.

Last update:

No citation recorded.