skip to main content

COPULA FRANK UNTUK PERHITUNGAN VALUE AT RISK PORTOFOLIO BIVARIAT PADA MODEL EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

*Eka Anisha  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2021 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Stocks are one type of investment that promises return for investors but often carries a high risk. Value at Risk (VaR) is a measuring tool that can calculate the amount of the worst loss that occurs in a stock portfolio with a certain level of confidence and within a certain time period. In general, financial data have a high volatility value, which causes the residuals are not normally distributed. ARCH/GARCH modoel is used to solve the heteroscedasticity problem. If the data also have an asymmetric effect, it is modelled with Exponential GARCH model. Copula-Frank is part of the Archimedian copula which is used to solve empirical cases. The data on this study were BBCA and KLBF stock price return data in the observation period 30 December 2011 – 6 December 2019. Furthermore, to test the validity of the VaR model, a backtesting test will be carried out using the Kupiec Test. The results showed that the best model used for BBCA stocks was ARIMA (1,0,1) EGARCH (1,1) and for KLBF stocks was ARIMA (1,0,1) EGARCH (1,2). The amount of risk with a 95% confidence level used a combination of the EGARCH and Copula-Frank models was 2.233% of today's investment. Based on the backtesting test used the Kupiec Test, the VaR model of the portfolio obtained was declared valid.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (135KB)    Indexing metadata
Keywords: Value at Risk, EGARCH, Copula-Frank, Backtesting, Kupiec Test.

Article Metrics:

  1. Arna, N. U. S., Raupong dan Anisa. 2017. Pemodelan Dependensi Distribusi Variabel Non Gaussian Dengan Copula Frank Menggunakan Korelasi Rho Spearman. Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Hasanuddin. Makassar
  2. Brook, C. 2008. Introductory Eonometrics for Finance Second Edition. New York: Cambridge University Press
  3. Cherubini, U., Luciano, E., dan Vecchiato, W. 2004. Copula Methods in Finance. Wiley Finance Series. UK: John Wiley and Sons, Chichester
  4. Christianti, dan Ari. 2010. Risiko Pasar: Perbandingan Model EWMA dan GARCH Pada Nilai Tukar Rupiah Terhadap US Dollar. JRMB. Vol. 5, No. 2
  5. Danielsson, J. 2011. Financial Risk Forecasting The Theory and Practice of Forecasting Market Risk with Implementation in R and Matlab. United Kingdom: John Wiley & Sons
  6. Darmadji, T. dan Fakhruddin, H. 2001. Pasar Modal di Indonesia Pendekatan Tanya Jawab. Jakarta: Salemba Empat
  7. Embrechts, P., Lindskog, F. dan McNeil, A. 2001. Modelling Dependence with Copulas and Aplication to Risk Management. Switzerland: Departement of Mathematics, ETHZ CH-8092 Zürich
  8. Genest, C. dan Frave, A. C. 2007. Everything You Always Wanted to know about Copula Modeling but Were Afraid to Ask. Inggris: Hydrol
  9. Hyndman, R. J. dan Khandakar, Y. 2008. Automatic Time Series Forecasting: The Forecast Package for R. Journal of Statistical Software, Vol. 27, No. 3: 1-26
  10. Kupiec, P. H. 1995. Techniques for Verifying The Accuracy of Risk Measurement Models.The Journal of Derivatives. A Publication of Institusional Investor. New York
  11. Maruddani, D. A. I. dan Purbowati, A. 2009. Pengukuran Value at Risk pada Kurs Tunggal dan Portofolio dengan Simulasi Monte Carlo. Media Statistika Vol. 2 Hal. 259-264
  12. Nelson, D. B. 1991. Conditional Heteroscedasticity in Asset Return: A New Approach. Journal of Econometrica. Vol. 59, No.2, 357-370
  13. Rosadi, D. 2012. Ekonometrika dan Analisis Waktu Terapan dengan Eviews. Yogyakarta: Andi Offset
  14. Sklar, A. 1959. Fonctions de Repartition an Dimensions et Leurs Marges. Publications de I’Institut Statistique de I’Université de Paris, Vol 8 Hal 229-231
  15. Tsay, R. S. 2002. Analysis of Financial Time Series. Canada : John Wiley and Sons, Inc

Last update:

No citation recorded.

Last update:

No citation recorded.