BibTex Citation Data :
@article{J.Gauss29435, author = {Leni Pamularsih and Mustafid Mustafid and Abdul Hoyyi}, title = {PENERAPAN SEASONAL GENERALIZED SPACE TIME AUTOREGRESSIVE SEEMINGLY UNRELATED REGRESSION (SGSTAR SUR) PADA PERAMALAN HASIL PRODUKSI PADI}, journal = {Jurnal Gaussian}, volume = {10}, number = {2}, year = {2021}, keywords = {Rice yield, Seasonal, GSTAR, SUR.}, abstract = { Ordinary Least Square (OLS) is general method to estimate Generalized Space Time Autoregressive (GSTAR) parameters. Parameter estimation by using OLS for GSTAR model with correlated residuals between equations will produce inefficient estimators. The method that appropriate to estimate the parameter model with correlated residuals between equations is Generalized Least Square (GLS), which is usually used in Seemingly Unrelated Regression (SUR). This research aims to build the seasonal GSTAR SUR model as model of rice yield forecasting in three locations by using the best weighting. Weights used are binary weights, inverse distance and normalization of cross correlation. Data which used in this research are the data of rice yield per quarter in three districts in Central Java, namely Banyumas, Cilacap and Kebumen. The data from the period of January 1981 to December 2014 as training data and the period of January 2015 to December 2018 as validation data. The resulting is a model that has a seasonal effect with the autoregressive order and the spasial order limited to 1 so the model formed is SGSTAR (4 1 )-I(1)(1) 3 . The best model produced is the SGSTAR SUR (4 1 )-I(1)(1) 3 model with inverse distance weighting because it fulfills both assumptions, residuals white noise and residuals normally multivariate distribution. Additionally, it has the smallest MAPE value when compared the other weighting, that is 20%. This MAPE value indicates that the accuracy rate of forecast is accurate. Keywords : Rice yield, Seasonal, GSTAR, SUR. }, issn = {2339-2541}, pages = {241--249} doi = {10.14710/j.gauss.10.2.241-249}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/29435} }
Refworks Citation Data :
Ordinary Least Square (OLS) is general method to estimate Generalized Space Time Autoregressive (GSTAR) parameters. Parameter estimation by using OLS for GSTAR model with correlated residuals between equations will produce inefficient estimators. The method that appropriate to estimate the parameter model with correlated residuals between equations is Generalized Least Square (GLS), which is usually used in Seemingly Unrelated Regression (SUR). This research aims to build the seasonal GSTAR SUR model as model of rice yield forecasting in three locations by using the best weighting. Weights used are binary weights, inverse distance and normalization of cross correlation. Data which used in this research are the data of rice yield per quarter in three districts in Central Java, namely Banyumas, Cilacap and Kebumen. The data from the period of January 1981 to December 2014 as training data and the period of January 2015 to December 2018 as validation data. The resulting is a model that has a seasonal effect with the autoregressive order and the spasial order limited to 1 so the model formed is SGSTAR (41)-I(1)(1)3. The best model produced is the SGSTAR SUR (41)-I(1)(1)3 model with inverse distance weighting because it fulfills both assumptions, residuals white noise and residuals normally multivariate distribution. Additionally, it has the smallest MAPE value when compared the other weighting, that is 20%. This MAPE value indicates that the accuracy rate of forecast is accurate.
Keywords: Rice yield, Seasonal, GSTAR, SUR.
Note: This article has supplementary file(s).
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics