skip to main content

PENGUKURAN VALUE AT-RISK PADA PORTOFOLIO OBLIGASI DENGAN METODE VARIAN-KOVARIAN

*Khoirul Anam  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Di Asih I Maruddani  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Puspita Kartikasari  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

A bond is investment instrument that is basically a debt investment. The profit gained in investing will be comparable with the risk. An investor must pay attention to the size of the risk in choosing bonds. Value at-Risk (VaR) is a risk measurement instruments for measure the maximum loss of asset or portfolio over a spesicif time interval for a given confidence level under normal market conditions. The purpose of this paper is to explain VaR measurement on bond portfolio using variance-covariance method and prove that method is valid to estimate VaR’s model using likelihood ratio. Variance covariance method was chosen because giving lower estimate potential volatility of asset or portfolio than historical simulation and Monte-Carlo simulation. This article use goverment bonds with code FR0053, FR0061, FR0073, FR0074 and portfolio combination. Normality test of return asset and portfolio are required before calculating VaR values. The result of this paper for confidence level 95% showed that bond portfolio FR0053 with FR0061 have a smaller value with VaR values 2,28% of the total market value. It was concluded that VaR bond portfolio are smaller than VaR single asset. Verification test estimate that VaR values using variance-covariance is valid at confidence level 95%.

Fulltext View|Download
Keywords: Bond, Value at-Risk, Variance-covariance, Portfolio, Verification Test

Article Metrics:

  1. Azizah, S., Sugito., dan Prahutama, A. 2014. Pengukuran Kinerja Portofolio Saham Menggunakan Model Black-Litterman Berdasarkan Indeks Treynor, Indeks Sharpe, dan Indeks Jensen (Studi Kasus Saham-Saham yang Termasuk dalam Jakarta Islamic Index Periode 2009-2013). Jurnal Gaussian Vol. 3, No. 4: 859-868
  2. Chalik, S. 2003. Perhitungan Value at-Risk Obligasi dengan Pendekatan Variance Covariance. Tesis. Jakarta: Fakultas Ekonomi UI
  3. Fabozzi, F. J. 1993. Fixed Income Mathematics - Analytical & Statistical Techniques. Chicago: Probus Publishing Co
  4. Jorion, P. 2007. Value at Risk: The New Benchmark for Managing Financial Risk. Third Edition. Singapore: McGraw-Hill International Edition
  5. Kupiec, P. H. 1995. Technique for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives. A Publication of Institutional Investor, Newyork
  6. Obadović, M., Petrovic, E., Vunjak, N., dan Ilic, M. 2016. Assessing the Accuracy of Delta-normal VaR Evaluation for Serbian Government Bond Portfolio. Economic research-Ekonomska istraživanja Vol. 29, No.1 : 475-485
  7. Pandutama, A. 2012. Faktor-Faktor yang Mempengaruhi Prediksi Peringkat Obligasi pada Perusahaan Manufaktur Di BEI. Jurnal Ilmiah Mahasiswa Akuntansi Vol. 1, No. 4: Hal. 82-87
  8. Penza, P., dan Bansal, V. K. 2001. Measuring Market with Value at Risk. New York: John Wiley & Sons, Inc
  9. Puspitadewi, N. 2010. Analisis Perbandingan Yield dan Risiko Pasar antara Portofolio Obligasi dengan Sukuk. Skripsi. Yogyakarta: Fakultas Syari’ah UIN
  10. Rachman, F., Rachmatin, D., dan Dahlan, J. A. 2015. Penerapan Metode Exponentially Weigthed Moving Average (EWMA) dan Metode Semi Varians (SV) dalam Perhitungan Risiko Portofolio Saham PT Pindad Persero. STATISTIKA: Journal of Theoretical Statistics and lts Applications Vol. 15, No. 2: 39-57
  11. Rahardjo, S. 2003. Pedoman Investasi Obligasi. Jakarta: Gramedia
  12. Wibowo, E. 2011. Analisis Penentuan Saham yang Akan Dibeli, Suatu Tinjauan Umum. Jurnal Ekonomi dan Kewirausahaan Vol. 11, No. 1: 151-158

Last update:

No citation recorded.

Last update:

No citation recorded.