skip to main content

PREDIKSI JUMLAH KEBERANGKATAN PENUMPANG PESAWAT TERBANG MENGGUNAKAN MODEL VARIASI KALENDER DAN DETEKSI OUTLIER (Studi Kasus di Bandara Soekarno-Hatta)

*Alvi Waldira  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Abdul Hoyyi  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Dwi Ispriyanti  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

 

Transportation has a strategic role, even becoming one of the main needs of the community, especially air transportation services. A large number of passengers in air transportation always experiences a difference every month. One of the differences occurred when approaching Eid al-Fitr, which changes every year based on an Islamic calendar that is different from Masehi calendar. The lunar shift in the occurrence of Eid al-Fitr forms a pattern called calendar variation. The effects of calendar variations can be overcome by using an additional variable, such as a dummy variable, this variable which will be used in the ARIMAX model. Observation of time series is often influenced by several unexpected events such as outliers. This outlier causes the results of data analysis to be less valid. So the researchers added the detection of outliers in this study. Based on the analysis results, the ARIMA calendar variation model is obtained (1.0, [12]), with time variable t, dummy variable , and the addition of one outlier. This model has a MAPE value of 0.07079609 which means this model is very good for forecasting. Forecasting results showed an increase in the number of passengers during the two months before Eid.

 

Keywords: Passenger, calendar variation, outlier detection

Fulltext View|Download
Keywords: Passenger, calendar variation, outlier detection

Article Metrics:

  1. Afriani,I., et al. 2013. Pemodelan dan Peramalan Jumlah Pengunjung KBS Menggunakan Model Variasi Kalender ARIMAX. Statistika, FMIPA, Institut Teknologi Sepuluh Nopember Surabaya
  2. Ariefianto, M.D. 2012. Ekonometrika Esensi dan Aplikasi dengan Menggunakan Eviews. Edisi 4. Yogyakarta: UPP, STIM YPKN
  3. Bell, W.R. dan Hilmer, S. 1983. Modelling Time Series with Calendar Variation, Journal of American Statistical Association
  4. Bowerman, B. L., O' Connell, R. T., dan Emily M. 2012. Bussiness Statistics in Practice. New York: McGraw-Hill
  5. Damardjati, R.S. 1995. Istilah-istilah Dunia Pariwisata. Jakarta: PT. Pradnya Paramitha
  6. Dini,N.S., Haryono, dan Suhartono. 2012. Peramalan Kebutuhan Premium dengan Metode ARIMAX untuk Optimasi Persediaan di Wilayah TBBM Madiun. Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember (ITS)
  7. Engle, R.F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, Vol. 50, No. 4. (Jul., 1982), pp. 987-1007
  8. Filzmoser,P., R. Maronna, and M. Werner. 2006. Outlier identification in high dimensions
  9. Gujarati, D.N.. 1978. Ekonometrika Dasar. Jakarta: Erlangga
  10. Gujarati, D.N. 2004. Basic Econometrics (Ekonometrika Dasar). Alih Bahasa Sumarno Zain. Jakarta: Penerbit Erlangga
  11. Gujarati, D. N. 2013. Dasar-dasar Ekonometrika, Edisi Kelima. Mangunsong, R
  12. C. penerjemah. Jakarta: Salemba Empat
  13. Halimi,R., Anggaeni, W., dan Tyasnurita, R. 2013. Pembuatan Aplikasi Peramalan Jumlah Permintaan Produk Dengan Metode Time Series Exponential Smoothing Holts Winter di PT. Telekomunikasi Indonesia Tbk. Jurnal Teknik POMITS Vol. I, No. 1, Hal: 1-6
  14. Harahap, M.R.P dan Suharsono, A. 2014. Analisis Peramalan Penjualan Sepeda Motor di Kabupaten Ngawi dengan Arima dan Arimax. Jurnal Sains dan seni POMITS 3(2):122-126
  15. Izza,M.L. Destri S., dan Suhartono. 2014. Peramalan Penjualan Sepeda Motor Menurut Tipe Dengan Pendekatan Autoregressive Integrated Moving Average With Exogeneous Input (Arimax) Di Kabupaten Banyuwangi. Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam,
  16. Institut Teknologi Sepuluh Nopember (ITS)
  17. Liu,L.M. 1986. Identification of Time Series Models in Presence of Calendar Variation. International journal and Forecasting, Vol. 2, No. 3, 357-372
  18. Makridakis, S, Wheelwright, S.C, McGee, V.E. 1999. Metode dan Aplikasi Peramalan. Jilid I. Edisi 2. Jakarta: Erlangga
  19. Ristianti A., Erna H., Nunun H. M. 2014. Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika Baristand Industri Surabaya
  20. Rosadi, D. 2012. Ekonometrika & Analisis Runtun Waktu Terapan dengan Eviews. Yogyakarta. Penerbit ANDI
  21. Soejoeti, Z. 1987. Analisis Runtun Waktu, Materi Pokok UT. Jakarta. Karunika
  22. Subagyo, P. 1986. Forecasting Konsep dan aplikasi .Yogyakarta: BPPE UGM
  23. Suhartono, Lee, M.H, dan Hamzah, N.A. 2010. Calendar Variation Model Based on ARIMAX for Forecasting Sales Data with Ramadhan Effect. Proceedings of the Regional Conference on Statistical Sciences. 349-361. Malaysia Institute of Mathematical Sciences University of Malaya
  24. Suryaningtyas, W. 2011. Peramalan Volume Penjualan Celana Panjang di Boyolali dengan Menggunakan Model Variasi Kalender. Yogyakarta. Prosiding Seminar Nasional dan Pendidikan Matematika FMIPA UNY
  25. Suryawati, G., dan Suyitno. 2012. Model Variasi Kalender untuk Peramalan Volume Penjualan Tiket Penumpang Speedboat di Dermaga Kampung Baru Balikpapan. Program Studi Statistika FMIPA Universitas Mulawarman
  26. Tarno. 2013. Kombinasi Prosedur Pemodelan Subset Arima dan Deteksi Outlier untuk Prediksi Data Runtun Waktu. Prosiding Seminar Nasional Statistika UNDIP 2013. Semarang
  27. Wei, W.W.S. 2006. Time Series Analysis, Univariate and Multivariate Methods. Canada. Addison Wesley Publishing Company

Last update:

No citation recorded.

Last update:

No citation recorded.