skip to main content

PEMODELAN GENERALIZED SPACE TIME AUTOREGRESSIVE (GSTAR) SEASONAL PADA DATA CURAH HUJAN EMPAT KABUPATEN DI PROVINSI JAWA TENGAH

*Eko Siswanto  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Hasbi Yasin  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Sudarno Sudarno  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

In many applications, several time series data are recorded simultaneously at a number of locations. Time series data from nearby locations often to be related by spatial and time. This data is called spatial time series data. Generalized Space Time Autoregressive (GSTAR) model is one of space time models used to modeling and forecasting spatial time series data. This study applied GTSAR model to modeling volume of rainfall four locations in Jepara Regency, Kudus Regency, Pati Regency, and Grobogan Regency. Based on the smallest RMSE mean of forecasting result, the best model chosen by this study is GSTAR (11)-I(1)12 with the inverse distance weighted. Based on GSTAR(11)-I(1)12 with the inverse distance weighted, the relationship between the location shown on rainfall Pati Regency influenced by the rainfall in other regencies.

 

Keywords: GSTAR, RMSE, Rainfall
Fulltext View|Download
Keywords: GSTAR, RMSE, Rainfall

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.