BibTex Citation Data :
@article{J.Gauss26721, author = {Inas Hasimah and Moch. Mukid and Hasbi Yasin}, title = {KLASIFIKASI CALON DEBITUR KREDIT PEMILIKAN RUMAH (KPR) MULTIGUNA TAKE OVER MENGGUNAKAN METODE k NEAREST NEIGHBOR DENGAN PEMBOBOTAN GLOBAL GINI DIVERSITY INDEX}, journal = {Jurnal Gaussian}, volume = {8}, number = {4}, year = {2019}, keywords = {KPR Multiguna Take Over, Classification, KNN by Global Gini Diversity Index weighting, Evaluation of Classification}, abstract = { House credit (KPR) is a credit facilities for buying or other comsumptive needs with house warranty. The warranty for KPR is the house that will be purchased. The warranty for KPR multiguna take over is the house that will be owned by debtor, and then debtor is taking over KPR to another financial institution. For fulfilled the credit to prospective debtor is done by passing through the process of credit application and credit analysis. With the credit analysis, will acknowledge the ability of debtor for repay a credit. Final decision of credit application is classified into approved and refused. k Nearest Neighbor by attributes weighting using Global Gini Diversity Index is a statistical method that can be used to classify the credit decision of prospective debtor. This research use 2443 data of KPR multiguna take over’s prospective debtor in 2018 with credit decision of prospective debtor as dependent variable and four selected independent variable such as home ownership status, job, loans amount, and income. The best classification result of k-NN by Global Gini Diversity Index weighting is when using 80% training data set and 20% testing data set with k=7 obtained APER value 0,0798 and accuracy 92,02%. Keywords: KPR Multiguna Take Over, Classification, KNN by Global Gini Diversity Index weighting, Evaluation of Classification }, issn = {2339-2541}, pages = {407--417} doi = {10.14710/j.gauss.8.4.407-417}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26721} }
Refworks Citation Data :
House credit (KPR) is a credit facilities for buying or other comsumptive needs with house warranty. The warranty for KPR is the house that will be purchased. The warranty for KPR multiguna take over is the house that will be owned by debtor, and then debtor is taking over KPR to another financial institution. For fulfilled the credit to prospective debtor is done by passing through the process of credit application and credit analysis. With the credit analysis, will acknowledge the ability of debtor for repay a credit. Final decision of credit application is classified into approved and refused. k Nearest Neighbor by attributes weighting using Global Gini Diversity Index is a statistical method that can be used to classify the credit decision of prospective debtor. This research use 2443 data of KPR multiguna take over’s prospective debtor in 2018 with credit decision of prospective debtor as dependent variable and four selected independent variable such as home ownership status, job, loans amount, and income. The best classification result of k-NN by Global Gini Diversity Index weighting is when using 80% training data set and 20% testing data set with k=7 obtained APER value 0,0798 and accuracy 92,02%.
Keywords: KPR Multiguna Take Over, Classification, KNN by Global Gini Diversity Index weighting, Evaluation of Classification
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics