BibTex Citation Data :
@article{J.Gauss26679, author = {Alwi Assegaf and Moch. Mukid and Abdul Hoyyi}, title = {Analisis Kesehatan Bank Menggunakan Local Mean K-Nearest Neighbor dan Multi Local Means K-Harmonic Nearest Neighbor}, journal = {Jurnal Gaussian}, volume = {8}, number = {3}, year = {2019}, keywords = {Classification, Local Mean k-Nearest Neighbor (LMKNN), Multi Local Means k-Harmonic Nearest Neighbor (MLM-KHNN), Measure of accuracy of classification}, abstract = { The classification method continues to develop in order to get more accurate classification results than before. The purpose of the research is comparing the two k-Nearest Neighbor (KNN) methods that have been developed, namely the Local Mean k-Nearest Neighbor (LMKNN) and Multi Local Means k-Harmonic Nearest Neighbor (MLM-KHNN) by taking a case study of listed bank financial statements and financial statements complete recorded at Bank Indonesia in 2017. LMKNN is a method that aims to improve classification performance and reduce the influence of outliers, and MLM-KHNN is a method that aims to reduce sensitivity to a single value. This study uses seven indicators to measure the soundness of a bank, including the Capital Adequacy Ratio, Non Performing Loans, Loan to Deposit Ratio, Return on Assets, Return on Equity, Net Interest Margin, and Operating Expenses on Operational Income with a classification of bank health status is very good (class 1), good (class 2), quite good (class 3) and poor (class 4). The measure of the accuracy of the classification results used is the Apparent Error Rate (APER). The best classification results of the LMKNN method are in the proportion of 80% training data and 20% test data with k=7 which produces the smallest APER 0,0556 and an accuracy of 94,44%, while the best classification results of the MLM-KHNN method are in the proportion of 80% training data and 20% test data with k=3 which produces the smallest APER 0,1667 and an accuracy of 83,33%. Based on APER calculation shows that the LMKNN method is better than MLM-KHNN in classifying the health status of banks in Indonesia. Keywords : Classification, Local Mean k-Nearest Neighbor (LMKNN), Multi Local Means k-Harmonic Nearest Neighbor (MLM-KHNN), Measure of accuracy of classification }, issn = {2339-2541}, pages = {343--355} doi = {10.14710/j.gauss.8.3.343-355}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26679} }
Refworks Citation Data :
The classification method continues to develop in order to get more accurate classification results than before. The purpose of the research is comparing the two k-Nearest Neighbor (KNN) methods that have been developed, namely the Local Mean k-Nearest Neighbor (LMKNN) and Multi Local Means k-Harmonic Nearest Neighbor (MLM-KHNN) by taking a case study of listed bank financial statements and financial statements complete recorded at Bank Indonesia in 2017. LMKNN is a method that aims to improve classification performance and reduce the influence of outliers, and MLM-KHNN is a method that aims to reduce sensitivity to a single value. This study uses seven indicators to measure the soundness of a bank, including the Capital Adequacy Ratio, Non Performing Loans, Loan to Deposit Ratio, Return on Assets, Return on Equity, Net Interest Margin, and Operating Expenses on Operational Income with a classification of bank health status is very good (class 1), good (class 2), quite good (class 3) and poor (class 4). The measure of the accuracy of the classification results used is the Apparent Error Rate (APER). The best classification results of the LMKNN method are in the proportion of 80% training data and 20% test data with k=7 which produces the smallest APER 0,0556 and an accuracy of 94,44%, while the best classification results of the MLM-KHNN method are in the proportion of 80% training data and 20% test data with k=3 which produces the smallest APER 0,1667 and an accuracy of 83,33%. Based on APER calculation shows that the LMKNN method is better than MLM-KHNN in classifying the health status of banks in Indonesia.
Keywords: Classification, Local Mean k-Nearest Neighbor (LMKNN), Multi Local Means k-Harmonic Nearest Neighbor (MLM-KHNN), Measure of accuracy of classification
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics