BibTex Citation Data :
@article{J.Gauss26658, author = {Heni Wulandari and Mustafid Mustafid and Hasbi Yasin}, title = {PENERAPAN METODE EXPONENTIALLY WEIGHTED MOVING AVERAGE (EWMA) DALAM PENGUKURAN RISIKO INEVSTASI SAHAM PORTOFOLIO UNTUK VOLATILITAS HETEROGEN}, journal = {Jurnal Gaussian}, volume = {7}, number = {3}, year = {2018}, keywords = {Value at Risk (VaR), Portfolio, EWMA, Historical Simulation, Volatility Updating}, abstract = { Risk measurement is important in making an investment. One tool used in the measurement of investment risk is Value at Risk (VaR). VaR represents the greatest possible loss of investment with a given period and level of confidence. In the calculation of Value at Risk requires the assumption of normality and homogeneity. However, financial data rarely satisfies that assumption. Exponentially Weighted Moving Average is one method that can be used to overcome the existence of a heterogeneous variant. Daily volatility is calculated using the EWMA method by taking a decay factor of 0.94. VaR portfolio of ASII, BBNI and PTBA stocks is calculated using historical simulation method from the revised portfolio return with Hull and White volatility updating procedure. VaR values obtained are valid at a 99% confidence level based on the validity test of Kupiec PF and Basel rules. Keywords: Value at Risk (VaR), Portfolio, EWMA, Historical Simulation , Volatility Updating }, issn = {2339-2541}, pages = {248--259} doi = {10.14710/j.gauss.7.3.248-259}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26658} }
Refworks Citation Data :
Risk measurement is important in making an investment. One tool used in the measurement of investment risk is Value at Risk (VaR). VaR represents the greatest possible loss of investment with a given period and level of confidence. In the calculation of Value at Risk requires the assumption of normality and homogeneity. However, financial data rarely satisfies that assumption. Exponentially Weighted Moving Average is one method that can be used to overcome the existence of a heterogeneous variant. Daily volatility is calculated using the EWMA method by taking a decay factor of 0.94. VaR portfolio of ASII, BBNI and PTBA stocks is calculated using historical simulation method from the revised portfolio return with Hull and White volatility updating procedure. VaR values obtained are valid at a 99% confidence level based on the validity test of Kupiec PF and Basel rules.
Keywords: Value at Risk (VaR), Portfolio, EWMA, Historical Simulation, Volatility Updating
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics