BibTex Citation Data :
@article{J.Gauss26661, author = {Inas Diarsih and Tarno Tarno and Agus Rusgiyono}, title = {PEMODELAN PRODUKSI BAWANG MERAH DI JAWA TENGAH DENGAN MENGGUNAKAN HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE – ADAPTIVE NEURO FUZZY INFERENCE SYSTEM}, journal = {Jurnal Gaussian}, volume = {7}, number = {3}, year = {2018}, keywords = {}, abstract = { Red onion is one of the strategic horticulture commodities in Indonesia considering its function as the main ingredients of the basic ingredients of Indonesian cuisine. In an effort to increase production to supply national necessary, Central Java as the main center of red onion production should be able to predict the production of several periods ahead to maintain the balance of national production. The purpose of this research is to get the best model to forecast the production of red onion in Central Java by ARIMA, ANFIS, and hybrid ARIMA-ANFIS method. Model accuracy is measured by the smallest RMSE and AIC values. The results show that the best model to modeling red onion production in Central Java is obtained by hybrid ARIMA-ANFIS model which is a combination between SARIMA ([2], 1, [12]) and residual ARIMA using ANFIS model with input e t,1, e t,2 on the grid partition technique, gbell membership function, and membership number of 2 that produce RMSE 12033 and AIC 21.6634. While ARIMA model yield RMSE 13301,24 and AIC 21,89807 with violation of assumption. And the ANFIS model produces RMSE 14832 and AIC 22,0777. This shows that ARIMA-ANFIS hybrid method is better than ARIMA and ANFIS. Keywords: production of red onion, ARIMA, ANFIS, hybrid ARIMA-ANFIS }, issn = {2339-2541}, pages = {281--292} doi = {10.14710/j.gauss.7.3.281-292}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26661} }
Refworks Citation Data :
Red onion is one of the strategic horticulture commodities in Indonesia considering its function as the main ingredients of the basic ingredients of Indonesian cuisine. In an effort to increase production to supply national necessary, Central Java as the main center of red onion production should be able to predict the production of several periods ahead to maintain the balance of national production. The purpose of this research is to get the best model to forecast the production of red onion in Central Java by ARIMA, ANFIS, and hybrid ARIMA-ANFIS method. Model accuracy is measured by the smallest RMSE and AIC values. The results show that the best model to modeling red onion production in Central Java is obtained by hybrid ARIMA-ANFIS model which is a combination between SARIMA ([2], 1, [12]) and residual ARIMA using ANFIS model with input et,1, et,2 on the grid partition technique, gbell membership function, and membership number of 2 that produce RMSE 12033 and AIC 21.6634. While ARIMA model yield RMSE 13301,24 and AIC 21,89807 with violation of assumption. And the ANFIS model produces RMSE 14832 and AIC 22,0777. This shows that ARIMA-ANFIS hybrid method is better than ARIMA and ANFIS.
Keywords: production of red onion, ARIMA, ANFIS, hybrid ARIMA-ANFIS
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics