BibTex Citation Data :
@article{J.Gauss26657, author = {Eka Lestari and Tatik Widiharih and Rita Rahmawati}, title = {PERAMALAN EKSPOR NONMIGAS DENGAN VARIASI KALENDER ISLAM MENGGUNAKAN X-13-ARIMA-SEATS (Studi Kasus: Ekspor Nonmigas Periode Januari 2013 sampai Desember 2017)}, journal = {Jurnal Gaussian}, volume = {7}, number = {3}, year = {2018}, keywords = {time series, non-oil and gas, X-13-ARIMA-SEATS, moving holiday}, abstract = { Non-oil and gas exports are one of the largest foreign exchange earners for Indonesia. Non-oil and gas exports always experience a decline in the month of Eid Al-Fitr due to delays in the delivery of export goods because the loading and unloading of goods at the port is reduced during Eid Al-Fitr. The shift of the Eid Al-Fitr month on the data will form a pattern or season with an unequal period called the moving holiday effect. The time series forecasting method that usually used the ARIMA method. Because the ARIMA method only suitable for time series data with the same seasonal period and can’t handle the moving holiday effect, the X-13-ARIMA-SEATS method used two steps. First, regARIMA modeling is a linear regression between time series data and the weight of Eid Al-Fitr and the residuals follow the ARIMA process. The weighting is based on three conditions, namely pre_holiday , post_holiday , and multiple . Second, X-12-ARIMA decomposition method for seasonal adjustments that produces trend-cycle components, seasonal, and irregular. Based on the analysis carried out on the monthly non-oil and gas export data for the period January 2013 to December 2017, the X-13-ARIMA-SEATS (1,1,0) model was obtained in the post_holiday condition as the best model. The forecasting results in 2018 show the largest decline in non-oil and gas exports in June 2018 which coincided with the Eid Al-Fitr holiday. MAPE value of 10.90% is obtained which shows that the forecasting ability is good. Keywords: time series , non-oil and gas, X-13-ARIMA-SEATS, moving holiday }, issn = {2339-2541}, pages = {236--247} doi = {10.14710/j.gauss.7.3.236-247}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26657} }
Refworks Citation Data :
Non-oil and gas exports are one of the largest foreign exchange earners for Indonesia. Non-oil and gas exports always experience a decline in the month of Eid Al-Fitr due to delays in the delivery of export goods because the loading and unloading of goods at the port is reduced during Eid Al-Fitr. The shift of the Eid Al-Fitr month on the data will form a pattern or season with an unequal period called the moving holiday effect. The time series forecasting method that usually used the ARIMA method. Because the ARIMA method only suitable for time series data with the same seasonal period and can’t handle the moving holiday effect, the X-13-ARIMA-SEATS method used two steps. First, regARIMA modeling is a linear regression between time series data and the weight of Eid Al-Fitr and the residuals follow the ARIMA process. The weighting is based on three conditions, namely pre_holiday, post_holiday, and multiple. Second, X-12-ARIMA decomposition method for seasonal adjustments that produces trend-cycle components, seasonal, and irregular. Based on the analysis carried out on the monthly non-oil and gas export data for the period January 2013 to December 2017, the X-13-ARIMA-SEATS (1,1,0) model was obtained in the post_holiday condition as the best model. The forecasting results in 2018 show the largest decline in non-oil and gas exports in June 2018 which coincided with the Eid Al-Fitr holiday. MAPE value of 10.90% is obtained which shows that the forecasting ability is good.
Keywords: time series, non-oil and gas, X-13-ARIMA-SEATS, moving holiday
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics