BibTex Citation Data :
@article{J.Gauss26648, author = {Riski Pitaloka and Sugito Sugito and Rita Rahmawati}, title = {PERBANDINGAN METODE ARIMA BOX-JENKINS DENGAN ARIMA ENSEMBLE PADA PERAMALAN NILAI IMPOR PROVINSI JAWA TENGAH}, journal = {Jurnal Gaussian}, volume = {8}, number = {2}, year = {2019}, keywords = {Import, ARIMA, ARIMA Ensemble, Stacking, Averaging}, abstract = { Import is activities to enter goods into the territory of a country, both commercial and non-commercial include goods that will be processed domestically. Import is an important requirement for industry in Central Java. The increase in high import values can cause deficit in the trade balance. Appropriate information about the projected amount of imports is needed so that the government can anticipate a high increase in imports through several policies that can be done. The forecasting method that can be used is ARIMA Box-Jenkins. The development of modeling in the field of time series forecasting shows that forecasting accuracy increases if it results from the merging of several models called ensemble ARIMA. The ensemble method used is averaging and stacking. The data used are monthly import value data in Central Java from January 2010 to December 2018. Modeling time series with Box-Jenkins ARIMA produces two significant models, namely ARIMA (2,1,0) and ARIMA (0,1,1). Both models are combined using the ARIMA ensemble averaging and stacking method. The best model chosen from the ARIMA method and ensemble ARIMA based on the least RMSE value is the ARIMA model (2,1,0) with RMSE value of 185,8892 Keywords: Import, ARIMA, ARIMA Ensemble, Stacking, Averaging}, issn = {2339-2541}, pages = {194--207} doi = {10.14710/j.gauss.8.2.194-207}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26648} }
Refworks Citation Data :
Import is activities to enter goods into the territory of a country, both commercial and non-commercial include goods that will be processed domestically. Import is an important requirement for industry in Central Java. The increase in high import values can cause deficit in the trade balance. Appropriate information about the projected amount of imports is needed so that the government can anticipate a high increase in imports through several policies that can be done. The forecasting method that can be used is ARIMA Box-Jenkins. The development of modeling in the field of time series forecasting shows that forecasting accuracy increases if it results from the merging of several models called ensemble ARIMA. The ensemble method used is averaging and stacking. The data used are monthly import value data in Central Java from January 2010 to December 2018. Modeling time series with Box-Jenkins ARIMA produces two significant models, namely ARIMA (2,1,0) and ARIMA (0,1,1). Both models are combined using the ARIMA ensemble averaging and stacking method. The best model chosen from the ARIMA method and ensemble ARIMA based on the least RMSE value is the ARIMA model (2,1,0) with RMSE value of 185,8892
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics