BibTex Citation Data :
@article{J.Gauss26641, author = {Nisa Izati and Budi Warsito and Tatik Widiharih}, title = {PREDIKSI HARGA EMAS MENGGUNAKAN FEED FORWARD NEURAL NETWORK DENGAN METODE EXTREME LEARNING MACHINE}, journal = {Jurnal Gaussian}, volume = {8}, number = {2}, year = {2019}, keywords = {gold price, Extreme Learning Machine, MAPE}, abstract = { The prediction of gold price aims to find out the gold price in the future on the basis of historical data on gold prices in the past, so it can be used as a consideration by gold investors to investing in gold. Prediction methods that do not require assumptions, one of which is Artificial Neural Networks. In this study, using Artificial Neural Networks, Feed Forward Neural Network with Extreme Learning Machine (ELM). ELM is a non-iterative algorithm so ELM has advantages in process speed. The input weight and bias for this method are determined randomly. After that, to find the final weight using the Moore-Penrose Generalized Inverse calculation on the hidden layer output matrix. The best model selection criteria uses the Mean Absolute Percentage Error (MAPE). This study shows that the results of the training and testing process from the model 1 input neuron and 7 hidden neurons are very good, because it produces MAPE training = 0.6752% and MAPE testing = 0.8065%. Also gives a very good prediction result because it has MAPE = 0.5499% Keywords: gold price, Extreme Learning Machine, MAPE}, issn = {2339-2541}, pages = {171--183} doi = {10.14710/j.gauss.8.2.171-183}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26641} }
Refworks Citation Data :
The prediction of gold price aims to find out the gold price in the future on the basis of historical data on gold prices in the past, so it can be used as a consideration by gold investors to investing in gold. Prediction methods that do not require assumptions, one of which is Artificial Neural Networks. In this study, using Artificial Neural Networks, Feed Forward Neural Network with Extreme Learning Machine (ELM). ELM is a non-iterative algorithm so ELM has advantages in process speed. The input weight and bias for this method are determined randomly. After that, to find the final weight using the Moore-Penrose Generalized Inverse calculation on the hidden layer output matrix. The best model selection criteria uses the Mean Absolute Percentage Error (MAPE). This study shows that the results of the training and testing process from the model 1 input neuron and 7 hidden neurons are very good, because it produces MAPE training = 0.6752% and MAPE testing = 0.8065%. Also gives a very good prediction result because it has MAPE = 0.5499%
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics