BibTex Citation Data :
@article{J.Gauss26640, author = {Milla Nahdliyah and Tatik Widiharih and Alan Prahutama}, title = {METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018)}, journal = {Jurnal Gaussian}, volume = {8}, number = {2}, year = {2019}, keywords = {Clustering, k-Medoids, Euclidean distance, Cityblock distance, Silhouette index, C-index, Crime}, abstract = { The k-medoids method is a non-hierarchical clustering to classify n object into k clusters that have the same characteristics. This clustering algorithm uses the medoid as its cluster center. Medoid is the most centrally located object in a cluster, so it’s robust to outliers. In cluster analysis the objects are grouped by the similarity. To measure the similarity, it can be used distance measures, euclidean distance and cityblock distance. The distance that is used in cluster analysis can affect the clustering results. Then, to determine the quality of the clustering results can be used the internal criteria with silhouette width and C-index. In this research the k-medoids method to classify of regencies/cities in Central Java based on type and number of crimes. The optimal cluster at k= 4 use euclidean distance, where the silhouette index= 0,3862593 and C-index= 0,043893. Keywords: Clustering, k-Medoids, Euclidean distance, Cityblock distance, Silhouette index, C-index, Crime }, issn = {2339-2541}, pages = {161--170} doi = {10.14710/j.gauss.8.2.161-170}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26640} }
Refworks Citation Data :
The k-medoids method is a non-hierarchical clustering to classify n object into k clusters that have the same characteristics. This clustering algorithm uses the medoid as its cluster center. Medoid is the most centrally located object in a cluster, so it’s robust to outliers. In cluster analysis the objects are grouped by the similarity. To measure the similarity, it can be used distance measures, euclidean distance and cityblock distance. The distance that is used in cluster analysis can affect the clustering results. Then, to determine the quality of the clustering results can be used the internal criteria with silhouette width and C-index. In this research the k-medoids method to classify of regencies/cities in Central Java based on type and number of crimes. The optimal cluster at k= 4 use euclidean distance, where the silhouette index= 0,3862593 and C-index= 0,043893.
Keywords: Clustering, k-Medoids, Euclidean distance, Cityblock distance, Silhouette index, C-index, Crime
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics