skip to main content

METODE k-MEDOIDS CLUSTERING DENGAN VALIDASI SILHOUETTE INDEX DAN C-INDEX (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018)

*Milla Alifatun Nahdliyah  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Tatik Widiharih  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Alan Prahutama  -  Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The k-medoids method is a non-hierarchical clustering to classify n object into k clusters that have the same characteristics. This clustering algorithm uses the medoid as its cluster center. Medoid is the most centrally located object in a cluster, so it’s robust to outliers. In cluster analysis the objects are grouped by the similarity. To measure the similarity, it can be used distance measures, euclidean distance and cityblock distance. The distance that is used in cluster analysis can affect the clustering results. Then, to determine the quality of the clustering results can be used the internal criteria with silhouette width and C-index. In this research the k-medoids method to classify of regencies/cities in Central Java based on type and number of crimes. The optimal cluster at k= 4 use euclidean distance, where the silhouette index= 0,3862593 and C-index= 0,043893. 

Keywords: Clustering, k-Medoids, Euclidean distance, Cityblock distance, Silhouette index, C-index, Crime

Fulltext View|Download
Keywords: Clustering, k-Medoids, Euclidean distance, Cityblock distance, Silhouette index, C-index, Crime

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.