slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor
PEMODELAN REGRESI RIDGE ROBUST-MM DALAM PENANGANAN MULTIKOLINIERITAS DAN PENCILAN (Studi Kasus : Faktor-Faktor yang Mempengaruhi AKB di Jawa Tengah Tahun 2017) | Destiyani | Jurnal Gaussian skip to main content

PEMODELAN REGRESI RIDGE ROBUST-MM DALAM PENANGANAN MULTIKOLINIERITAS DAN PENCILAN (Studi Kasus : Faktor-Faktor yang Mempengaruhi AKB di Jawa Tengah Tahun 2017)

*Eka Destiyani  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Rita Rahmawati  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Suparti Suparti  -  Departemen Statistika, FSM, Universitas Diponegoro, Indonesia
Open Access Copyright 2020 Jurnal Gaussian under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linear regression parameters. If multicollinearity is exist within predictor variables especially coupled with the outliers, then regression analysis with OLS is no longer used. One method that can be used to solve a multicollinearity and outliers problems is Ridge Robust-MM Regression. Ridge Robust-MM  Regression is a modification of the Ridge Regression method based on the MM-estimator of Robust Regression. The case study in this research is AKB in Central Java 2017 influenced by population dencity, the precentage of households behaving in a clean and healthy life, the number of low-weighted baby born, the number of babies who are given exclusive breastfeeding, the number of babies that receiving a neonatal visit once, and the number of babies who get health services. The result of estimation using OLS show that there is violation of multicollinearity and also the presence of outliers. Applied ridge robust-MM regression to case study proves ridge robust regression can improve parameter estimation. Based on t test at 5% significance level most of predictor variables have significant effect to variable AKB. The influence value of predictor variables to AKB is 47.68% and MSE value is 0.01538.

Keywords:  Ordinary  Least  Squares  (OLS),  Multicollinearity,  Outliers,  Ridge

Regression, Robust Regression, AKB.

Fulltext View|Download
Keywords: Ordinary Least Squares (OLS), Multicollinearity; Outliers; Ridge Regression; Robust Regression; AKB.

Article Metrics:

Last update:

No citation recorded.

Last update:

No citation recorded.