BibTex Citation Data :
@article{J.Gauss16132, author = {Dyah Kusumaningrum and Suparti Suparti and Di Maruddani}, title = {ANALISIS DATA RUNTUN WAKTU MENGGUNAKAN METODE WAVELET THRESHOLDING DENGAN MAXIMAL OVERLAP DISCRETE TRANSFORM}, journal = {Jurnal Gaussian}, volume = {6}, number = {1}, year = {2017}, keywords = {Multiresolution Analysis, Wavelet Thresholding Estimator}, abstract = { Wavelet is a mathematical tool for analyzing time series data. Wavelet has certain properties one of which is localized in the time domain and frequency and form an orthogonal basis in the space L 2 (R). There are two types of wavelet estimators are linear and nonlinear wavelet estimators. Linear wavelet estimators can be analyzed using the approach of Multiresolution Analysis (MRA), while nonlinear wavelet estimator called Wavelet Thresholding. Wavelet thresholding are emphasizing the reconstruction of wavelet using a number of the largest coefficient or can be said that only coefficient greater than a value taken, while other coefficients are ignored. There’re several factors that affect the smooth running of the estimation are the type of wavelet function, types of functions of thresholding, thresholding parameters, and the level of resolution. Therefore, in this thesis will have optimal threshold value in analyzing the data. Wavelet Thresholding method provides value of Mean Square Error (MSE) that smaller compare to wavelet method with the approach Multiresolution Analysis (MRA). In this case study Wavelet Thresholding are considered better in the analysis of time series data. Keywords: Multiresolution Analysis, Wavelet Thresholding Estimator. }, issn = {2339-2541}, pages = {151--159} doi = {10.14710/j.gauss.6.1.151-159}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/16132} }
Refworks Citation Data :
Wavelet is a mathematical tool for analyzing time series data. Wavelet has certain properties one of which is localized in the time domain and frequency and form an orthogonal basis in the space L2(R). There are two types of wavelet estimators are linear and nonlinear wavelet estimators. Linear wavelet estimators can be analyzed using the approach of Multiresolution Analysis (MRA), while nonlinear wavelet estimator called Wavelet Thresholding. Wavelet thresholding are emphasizing the reconstruction of wavelet using a number of the largest coefficient or can be said that only coefficient greater than a value taken, while other coefficients are ignored. There’re several factors that affect the smooth running of the estimation are the type of wavelet function, types of functions of thresholding, thresholding parameters, and the level of resolution. Therefore, in this thesis will have optimal threshold value in analyzing the data. Wavelet Thresholding method provides value of Mean Square Error (MSE) that smaller compare to wavelet method with the approach Multiresolution Analysis (MRA). In this case study Wavelet Thresholding are considered better in the analysis of time series data.
Keywords: Multiresolution Analysis, Wavelet Thresholding Estimator.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics