BibTex Citation Data :
@article{J.Gauss14722, author = {Dita Sari and Tatik Widiharih and Sugito Sugito}, title = {PREDIKSI RETURN PORTOFOLIO MENGGUNAKAN METODE KALMAN FILTER}, journal = {Jurnal Gaussian}, volume = {5}, number = {4}, year = {2016}, keywords = {portfolio return, Box-Jenkins, Kalman Filter}, abstract = { Stock is an evidence for individual or institutional ownership about a company. To cover losses in stocks investment, should be done diversification to spread risk in some stocks called as portfolio. Portfolio is a joint of two or more stocks investment that are choosen as investment’s targets over spesific time periods and certain rules. To minimize losses in stocks investment, needed to predict portfolio return for some coming periods. Good prediction has small difference with actual data. One method that can minimize MSE is Kalman Filter. Kalman Filter estimates a process through feed back Control Mechanism called recursion. The variable used are monthly portfolio return of PT Mayora Indah Tbk and PT Indofood Sukses Makmur Tbk in January 2005 until December 2015. Data In January 2005 until December 2014 are used to predict the return portfolio for Year 2015. After that, an interval is made for those forecast results and compare with actual data. If actual data are residing in the interval, then Kalman Filter method can be used to predict portfolio return for year 2016. The MSE value with kalman Filter is 0,00225 and the MSE value with Box-Jenkis method is 0,00253, so Kalman Filter can minimize the MSE value. Keywords : portfolio return, Box-Jenkins, Kalman Filter }, issn = {2339-2541}, pages = {651--661} doi = {10.14710/j.gauss.5.4.651-661}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14722} }
Refworks Citation Data :
Stock is an evidence for individual or institutional ownership about a company. To cover losses in stocks investment, should be done diversification to spread risk in some stocks called as portfolio. Portfolio is a joint of two or more stocks investment that are choosen as investment’s targets over spesific time periods and certain rules. To minimize losses in stocks investment, needed to predict portfolio return for some coming periods. Good prediction has small difference with actual data. One method that can minimize MSE is Kalman Filter. Kalman Filter estimates a process through feed back Control Mechanism called recursion. The variable used are monthly portfolio return of PT Mayora Indah Tbk and PT Indofood Sukses Makmur Tbk in January 2005 until December 2015. Data In January 2005 until December 2014 are used to predict the return portfolio for Year 2015. After that, an interval is made for those forecast results and compare with actual data. If actual data are residing in the interval, then Kalman Filter method can be used to predict portfolio return for year 2016. The MSE value with kalman Filter is 0,00225 and the MSE value with Box-Jenkis method is 0,00253, so Kalman Filter can minimize the MSE value.
Keywords : portfolio return, Box-Jenkins, Kalman Filter
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics