BibTex Citation Data :
@article{J.Gauss14721, author = {Desy Ningrat and Di Maruddani and Triastuti Wuryandari}, title = {ANALISIS CLUSTER DENGAN ALGORITMA K-MEANS DAN FUZZY C-MEANS CLUSTERING UNTUK PENGELOMPOKAN DATA OBLIGASI KORPORASI}, journal = {Jurnal Gaussian}, volume = {5}, number = {4}, year = {2016}, keywords = {Cluster Analysis, coupon rate, time to maturity, yield, rating, Fuzzy C-Means, K-Means, Xie Beni Index, Sw/Sb ratio.}, abstract = { Cluster analysis is a method of grouping data (object) that are based on information that found in the data which describes the object and relation within. Cluster analysis aims to make the joined objects in the cluster are identical (or related) with one another and different (not related) to objects in another cluster. In this study used two method of grouping; Fuzzy C-Means and K-Means Clustering. The data used in this research had been using 357 corporate bonds data on December 1 st , 2015. The variables used in this study consist of coupon rate, time to maturity, yield and rating of each corporate. The determination of the number of optimum clusters performed by Xie Beni index of validity calculation at FCM method. Having obtained the optimum number of clusters, evaluation step was conducted by comparing FCM method to K-Means method with noticing the average of standard deviation in the clusters and the average of standard deviation inter-clusters (Sw/Sb) from each method. Method with the smallest Sw/Sb ratio value would get chosen as the best method. Based on the validity index Xie Beni, the most optimum number of cluster is 10 because it has the smallest Sw/Sb ratio value compared to FCM, the value is 0,6651. Afterwards, the result of K-Means clustering is analyzed to determined the interpretation and characteristics of each formed clusters. Keyword: Cluster Analysis, coupon rate, time to maturity, yield, rating, Fuzzy C-Means, K-Means, Xie Beni Index, Sw/Sb ratio. }, issn = {2339-2541}, pages = {641--650} doi = {10.14710/j.gauss.5.4.641-650}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14721} }
Refworks Citation Data :
Cluster analysis is a method of grouping data (object) that are based on information that found in the data which describes the object and relation within. Cluster analysis aims to make the joined objects in the cluster are identical (or related) with one another and different (not related) to objects in another cluster. In this study used two method of grouping; Fuzzy C-Means and K-Means Clustering. The data used in this research had been using 357 corporate bonds data on December 1st, 2015. The variables used in this study consist of coupon rate, time to maturity, yield and rating of each corporate. The determination of the number of optimum clusters performed by Xie Beni index of validity calculation at FCM method. Having obtained the optimum number of clusters, evaluation step was conducted by comparing FCM method to K-Means method with noticing the average of standard deviation in the clusters and the average of standard deviation inter-clusters (Sw/Sb) from each method. Method with the smallest Sw/Sb ratio value would get chosen as the best method. Based on the validity index Xie Beni, the most optimum number of cluster is 10 because it has the smallest Sw/Sb ratio value compared to FCM, the value is 0,6651. Afterwards, the result of K-Means clustering is analyzed to determined the interpretation and characteristics of each formed clusters.
Keyword: Cluster Analysis, coupon rate, time to maturity, yield, rating, Fuzzy C-Means, K-Means, Xie Beni Index, Sw/Sb ratio.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics