BibTex Citation Data :
@article{J.Gauss14714, author = {Ungu Maharunti and Moch. Mukid and Agus Rusgiyono}, title = {ANALISIS DISKRIMINAN FISHER POPULASI GANDA UNTUK KLASIFIKASI NASABAH KREDIT}, journal = {Jurnal Gaussian}, volume = {5}, number = {3}, year = {2016}, keywords = {credit, classification, fisher multiple discriminant analysis}, abstract = { Credit is the biggest asset carried out by a bank and become the most dominant contributor to the bank income. However, the activity to distribute the credit takes a risk which can influence health and continuance of bank business. The credit risk which potentially occurs can be measured and controlled by analyzing directly whichever the credit client categorized to. The credit risk categorized to current credit, in specific concern credit, less current credit, doubtful credit and bad credit based on Bank Indonesia Regulation No.: 7/2/PBI/2005. The independent variables used in this research are nominal credit, principal balance, in time being bank client, time period, and bank interest. Fisher multiple discriminant analysis is a method whose assumption equality of covariance matrices. The result from using the Fisher multiple discriminant analysis in data of credit client from bank “X” in Pati shows that variable principal balance, in time being bank client, time period, and bank interest significant to measure credit risk. The classification using the Fisher multiple discriminant analysis in data of credit client from bank “X” in Pati gives the accurate 64,33%. Keywords : credit, classification, fisher multiple discriminant analysis }, issn = {2339-2541}, pages = {575--581} doi = {10.14710/j.gauss.5.3.575-581}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14714} }
Refworks Citation Data :
Credit is the biggest asset carried out by a bank and become the most dominant contributor to the bank income. However, the activity to distribute the credit takes a risk which can influence health and continuance of bank business. The credit risk which potentially occurs can be measured and controlled by analyzing directly whichever the credit client categorized to. The credit risk categorized to current credit, in specific concern credit, less current credit, doubtful credit and bad credit based on Bank Indonesia Regulation No.: 7/2/PBI/2005. The independent variables used in this research are nominal credit, principal balance, in time being bank client, time period, and bank interest. Fisher multiple discriminant analysis is a method whose assumption equality of covariance matrices. The result from using the Fisher multiple discriminant analysis in data of credit client from bank “X” in Pati shows that variable principal balance, in time being bank client, time period, and bank interest significant to measure credit risk. The classification using the Fisher multiple discriminant analysis in data of credit client from bank “X” in Pati gives the accurate 64,33%.
Keywords: credit, classification, fisher multiple discriminant analysis
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics