BibTex Citation Data :
@article{J.Gauss14692, author = {Ayu Ambarsari and Sudarno Sudarno and Tarno Tarno}, title = {PERBANDINGAN PENDEKATAN GENERALIZED EXTREME VALUE DAN GENERALIZED PARETO DISTRIBUTION UNTUK PERHITUNGAN VALUE AT RISK PADA PORTOFOLIO SAHAM}, journal = {Jurnal Gaussian}, volume = {5}, number = {3}, year = {2016}, keywords = {Portfolio, Return, Value at Risk (VaR), ARCH/GARCH, Block Maxima, Peaks Over Threshold, GEV, GPD.}, abstract = { Stock is one of investments that used by investor but often have high risk. So we need to calculate risk assessment for single stock and portfolios. Value at Risk (VaR) is a tool often used in measuring risk, especially in stock trading. Return stock usually has a fat tail distribution, there is usually a case of heteroscedasticity. Time series model that used to modeling this condition is Autoregressive Conditional Heteroscedasticity / Generalized Autoregressive Conditional Heteroscedasticity. This study focused on the calculation of VaR using Block Maxima with the approach Generalized Extreme Value/GEV and Peaks Over Threshold approach Generalized Pareto Distribution/GPD. Modeling volatility models of GARCH. Share data used in the case study is a daily closing PT. Astra International and Panin Financial period January 1 st , 2010 – January 22 nd , 2016. The result is ARIMA(0,1,1) GARCH(1,2) which is the best model with the smallest AIC. The amount of risk with a confidence level of 95% by GEV is 3,1613%, while the GPD is 3,2761% rupiah from current asset, in other words VaR GPD higher better than GEV. Keywords: Portfolio, Return, Value at Risk (VaR), ARCH/GARCH, Block Maxima, Peaks Over Threshold, GEV, GPD. }, issn = {2339-2541}, pages = {361--371} doi = {10.14710/j.gauss.5.3.361-371}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/14692} }
Refworks Citation Data :
Stock is one of investments that used by investor but often have high risk. So we need to calculate risk assessment for single stock and portfolios. Value at Risk (VaR) is a tool often used in measuring risk, especially in stock trading. Return stock usually has a fat tail distribution, there is usually a case of heteroscedasticity. Time series model that used to modeling this condition is Autoregressive Conditional Heteroscedasticity / Generalized Autoregressive Conditional Heteroscedasticity. This study focused on the calculation of VaR using Block Maxima with the approach Generalized Extreme Value/GEV and Peaks Over Threshold approach Generalized Pareto Distribution/GPD. Modeling volatility models of GARCH. Share data used in the case study is a daily closing PT. Astra International and Panin Financial period January 1st, 2010 – January 22nd, 2016. The result is ARIMA(0,1,1) GARCH(1,2) which is the best model with the smallest AIC. The amount of risk with a confidence level of 95% by GEV is 3,1613%, while the GPD is 3,2761% rupiah from current asset, in other words VaR GPD higher better than GEV.
Keywords: Portfolio, Return, Value at Risk (VaR), ARCH/GARCH, Block Maxima, Peaks Over Threshold, GEV, GPD.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics