BibTex Citation Data :
@article{J.Gauss11058, author = {Riza Priantoro and Dwi Ispriyanti and Moch. Mukid}, title = {PENENTUAN MODEL RETURN HARGA SAHAM DENGAN MULTI LAYER FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA RESILENT BACKPROPAGATION (Studi Kasus : Harga Penutupan Saham Unilever Indonesia Tbk. Periode September 2007 – Maret 2015)}, journal = {Jurnal Gaussian}, volume = {5}, number = {1}, year = {2016}, keywords = {return; neural network; back propagation; feed forward; back propagation algorithm; weight; forecasting.}, abstract = { Determination of a return of stock price model is often associated with a process of forecasting for future periods. A method that can be used is neural network. The use of neural network in the field of forecasting can be a good solution, but the problem is how to determine the network architecture and the selection of appropriate training methods. One possible option is to use resilent back propagation algorithm. Resilent back propagation algorithm is a supervised learning algorithm to change the weights of the layers. This algorithm uses the error in the backward direction (back propagation), but previously performed advanced stage (feed forward) to get the error. This algorithm can be used as a learning method in training model of a multi-layer feed forward neural network. From the results of the training and testing on the share return of stock price PT. Unilever Indonesia Tbk. data obtained MSE value of 0.0329. This model is good to use because it provides a fairly accurate prediction of the results shown by the proximity of the target with the output. Keywords : return, neural network, back propagation, feed forward, back propagation algorithm, weight, forecasting. }, issn = {2339-2541}, pages = {203--209} doi = {10.14710/j.gauss.5.1.203-209}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/11058} }
Refworks Citation Data :
Determination of a return of stock price model is often associated with a process of forecasting for future periods. A method that can be used is neural network. The use of neural network in the field of forecasting can be a good solution, but the problem is how to determine the network architecture and the selection of appropriate training methods. One possible option is to use resilent back propagation algorithm. Resilent back propagation algorithm is a supervised learning algorithm to change the weights of the layers. This algorithm uses the error in the backward direction (back propagation), but previously performed advanced stage (feed forward) to get the error. This algorithm can be used as a learning method in training model of a multi-layer feed forward neural network. From the results of the training and testing on the share return of stock price PT. Unilever Indonesia Tbk. data obtained MSE value of 0.0329. This model is good to use because it provides a fairly accurate prediction of the results shown by the proximity of the target with the output.
Keywords : return, neural network, back propagation, feed forward, back propagation algorithm, weight, forecasting.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics