BibTex Citation Data :
@article{J.Gauss10222, author = {Fitra Ramdhani and Abdul Hoyyi and Moch. Mukid}, title = {PENGELOMPOKAN PROVINSI DI INDONESIA BERDASARKAN KARAKTERISTIK KESEJAHTERAAN RAKYAT MENGGUNAKAN METODE K-MEANS CLUSTER}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {Welfare, NTAPR Priority Sector, K-Means Cluster Method, Davies-.Bouldin Index (DBI)}, abstract = { Welfare have a relative explanation, dynamic, and quantitative. Quantitative formulation of welfare is never final because it will continue to evolve along with the development needs of human life. In 2011, the National Team for the Acceleration of Poverty Reduction (NTAPR) made priority sector that can serve as a benchmark the welfare in a region. From the priority sector will be made cluster or group which contains all 33 provinces based on the level of public welfare in the region uses data in 2012 were sourced from the Central Statistics Agency (CSA). The method that can be used to group the 33 provinces is K-Means Cluster method with number cluster as many as two, three, four, and five clusters. K-Means Cluster method is one of cluster analysis method who can partition the data into one or more clusters, so that the data with the same characteristics are grouped into the same cluster and data with different characteristics grouped into other clusters. To know the most optimal of the number of clusters we use Davies-Bouldin Index (DBI). We concluded that the optimal number of cluster is three with details the province in the first clusters have superiority in four sectors like net enrollment rate of primary school, net enrollment rate of junior high school, IMR (Infant Mortality Rate), and access to electricity. The province in the second clusters have superiority in one sector, that is open unemployment rate. The province in the third clusters have superiority in all sectors. Keywords : Welfare, NTAPR Priority Sector, K-Means Cluster Method, Davies-.Bouldin Index (DBI) }, issn = {2339-2541}, pages = {875--884} doi = {10.14710/j.gauss.4.4.875-884}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10222} }
Refworks Citation Data :
Welfare have a relative explanation, dynamic, and quantitative. Quantitative formulation of welfare is never final because it will continue to evolve along with the development needs of human life. In 2011, the National Team for the Acceleration of Poverty Reduction (NTAPR) made priority sector that can serve as a benchmark the welfare in a region. From the priority sector will be made cluster or group which contains all 33 provinces based on the level of public welfare in the region uses data in 2012 were sourced from the Central Statistics Agency (CSA). The method that can be used to group the 33 provinces is K-Means Cluster method with number cluster as many as two, three, four, and five clusters. K-Means Cluster method is one of cluster analysis method who can partition the data into one or more clusters, so that the data with the same characteristics are grouped into the same cluster and data with different characteristics grouped into other clusters. To know the most optimal of the number of clusters we use Davies-Bouldin Index (DBI). We concluded that the optimal number of cluster is three with details the province in the first clusters have superiority in four sectors like net enrollment rate of primary school, net enrollment rate of junior high school, IMR (Infant Mortality Rate), and access to electricity. The province in the second clusters have superiority in one sector, that is open unemployment rate. The province in the third clusters have superiority in all sectors.
Keywords: Welfare, NTAPR Priority Sector, K-Means Cluster Method, Davies-.Bouldin Index (DBI)
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics