BibTex Citation Data :
@article{J.Gauss10125, author = {Ana Kristiana and Yuciana Wilandari and Alan Prahutama}, title = {PERAMALAN BEBAN PUNCAK PEMAKAIAN LISTRIK DI AREA SEMARANG DENGAN METODE HYBRID ARIMA (AUTOREGRESSIVE INTEGRATED MOVING AVERAGE)-ANFIS (ADAPTIVE NEURO FUZZY INFERENCE SYSTEM) (Studi Kasus di PT PLN (Persero) Distribusi Jawa Tengah dan DIY)}, journal = {Jurnal Gaussian}, volume = {4}, number = {4}, year = {2015}, keywords = {Electricity; Electrical peak load forecasting; ARIMA; ANFIS; Hybrid ARIMA-ANFIS}, abstract = { Electricity become one of the basic needs in society, so that the demand level for electricity even bigger as more complex activities in society. In order to fulfill the needs of electricity in Indonesia, PT PLN have to do electrical peak load forecasting to prevent electrical crisis. In this research, we use hybrid ARIMA-ANFIS methods to forecast daily peak load of electricity in Semarang period December 2014 until January 2015. The use of hybrid ARIMA-ANFIS is to capture both linear and nonlinear patterns in the data, because sometimes time series data can contain both linear and nonlinear patterns. Since ARIMA can not deal with nonlinear patterns while ANFIS is not able to handle both linear and nonlinear patterns alone. The accuracy of the model was measured by symmetric MAPE (sMAPE) criteria, in which the best model chosen is the model with the smallest sMAPE value. The results showed that the hybrid ARIMA-ANFIS model that used to predict the daily peak load electricity in Semarang during the period of December 2014 until January 2015, comes from combination between SARIMA (0,1,1)(0,1,1) 7 model and residual forecasting with ANFIS model using first lag input, Gaussian membership function in 3 clusters. Keywords : Electricity, Electrical peak load forecasting, ARIMA, ANFIS, Hybrid ARIMA-ANFIS. }, issn = {2339-2541}, pages = {714--723} doi = {10.14710/j.gauss.4.4.714-723}, url = {https://ejournal3.undip.ac.id/index.php/gaussian/article/view/10125} }
Refworks Citation Data :
Electricity become one of the basic needs in society, so that the demand level for electricity even bigger as more complex activities in society. In order to fulfill the needs of electricity in Indonesia, PT PLN have to do electrical peak load forecasting to prevent electrical crisis. In this research, we use hybrid ARIMA-ANFIS methods to forecast daily peak load of electricity in Semarang period December 2014 until January 2015. The use of hybrid ARIMA-ANFIS is to capture both linear and nonlinear patterns in the data, because sometimes time series data can contain both linear and nonlinear patterns. Since ARIMA can not deal with nonlinear patterns while ANFIS is not able to handle both linear and nonlinear patterns alone. The accuracy of the model was measured by symmetric MAPE (sMAPE) criteria, in which the best model chosen is the model with the smallest sMAPE value. The results showed that the hybrid ARIMA-ANFIS model that used to predict the daily peak load electricity in Semarang during the period of December 2014 until January 2015, comes from combination between SARIMA (0,1,1)(0,1,1)7 model and residual forecasting with ANFIS model using first lag input, Gaussian membership function in 3 clusters.
Keywords: Electricity, Electrical peak load forecasting, ARIMA, ANFIS, Hybrid ARIMA-ANFIS.
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Jurnal Gaussian and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Jurnal Gaussian journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Jurnal Gaussian]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Rukun Santoso (Editor-in-Chief) Editorial Office of Jurnal GaussianDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: jurnalgaussian@gmail.com
Jurnal Gaussian by Departemen Statistika Undip is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Visitor Number:
View statistics