PERHITUNGAN KARAKTERISTIK JARINGAN TEGANGAN MENENGAH BERBASIS WEB DENGAN PRESENTASI SISTEM INFORMASI GEOGRAFIS

Rumaisha Galuh Anindita^{*)}, Hermawan, and Maman Somantri

Jurusan Teknik Elektro Universitas Diponegoro semarang Jl. Prof. Sudarto, SH, Kampus UNDIP Tembalang, Semarang 50275, Indonesia

^{*)}E-mail : rumaishagaluh@yahoo.com

Abstrak

Kebutuhan energi listrik semakin lama semakin meningkat seiring perkembangan sektor industri dan pemukiman warga, sehingga PT PLN memerlukan suatu alat bantu pendukung dalam mengelola informasi jaringan distribusi listrik secara geografis. Untuk memenuhi kebutuhan tersebut PT PLN dan Jurusan Teknik Elektro beberapa tahun yang lalu membuat kerjasama penelitian yang hasilnya masih berupa sistem informasi manajemen aset berbasis sistem informasi geografis. Sistem informasi tersebut perlu dikembangkan untuk menganalisis karakteristik jaringan listrik dengan menambahkan aspek non spasial yang digunakan untuk perhitungan. Dengan memanfaatkan teknologi Sistem Informasi Geografis (SIG), dapat menginformasikan hasil perhitungan data karakteristik jaringan tegangan menengah. Serta berguna untuk mempermudah dalam pengembangan beban dan untuk mengetahui operasi jaringan. Selain itu dengan menggunakan GIS dapat melihat titik lokasi beban.

Kata kunci : Karakteristik Jaringan Listrik, Sistem Informasi Geografis (SIG)

Abstract

Electrical energy requirements progressively increased along with the development of industrial and residential sectors, so that PT PLN requires a support tool in managing electricity distribution network information geographically. To meet the needs of PT PLN and Electrical Engineering Department a few years ago made research collaboration that the result is still a management information system geographic information system-based assets. The information system should be developed to analyze the characteristics of the power grid by adding non-spatial aspects that are used for the calculation. By utilizing Geographic Information Systems (GIS), can inform the calculation of medium voltage network of characteristic data. As well as useful to facilitate the development and to determine the burden of network operations. In addition, by using GIS can see the location of the point of load.

Keywords: Electrical Network Characteristics, Geographic Information Systems (GIS)

1 Pendahuluan

Sistem Informasi Geografis (SIG) adalah sistem basis data yang bersifat spasial. Dengan kemampuannya, SIG dapat membantu mempermudah proses pemilihan alternatif keputusan. Hal ini dimungkinkan karena SIG mempunyai kemampuan untuk memproses dan menganalisa data dengan cepat. Disisi lain, semakin lama kebutuhan akan energi listrik semakin meningkat seiring dengan adanya perkembangan di sektor industri dan pemukiman warga. PT PLN sebagai perusahaan penyedia energi listrik memerlukan alat bantu pendukung dalam mengolah informasi jaringan distribusi listrik secara geografis. Untuk mememuhi kebutuhan tersebut PT PLN dan Jurusan Teknik Elektro Undip beberapa tahun lalu membuat sebuah kerjasama penelitian untuk penataan pelanggan dan jaringan PLN UPJ Semarang dimana salah satunya adalah mengembangkan sebuah sistem informasi geografis yang bisa menjadi sistem informasi untuk pelanggan (*Costumer Information System*) di PT PLN. Hasil pekerjaan penelitian itu baru merupakan sebuah sistem informasi manajemen aset yang berbasis sistem informasi geografis.

Penelitian ini merupakan penggabungan antara *software* perhitungan yang hanya dapat menghitung karakteristik jaringan tetapi tidak dapat mengetahui letak atau lokasi beban dan SIG yang dapat menunjukkan lokasi beban tetapi tidak dapat menghitung. Jadi penelitian ini

digunakan untuk menyederhanakan perhitungan karakteristik jaringan dan juga untuk menampilkan informasi dan lokasi beban. Sehingga pengguna dapat menggunakannya dengan mudah.

2 Metode

2.1 Perancangan Database

Database berfungsi untuk tempat penyimpanan data, dalam hal ini database digunakan untuk menyimpan karakteristik jaringan tegangan menengah. Perancangan database untuk Sistem Informasi Geografis Karakteristik Jaringan Tegangan Menengah terdiri atas dua tabel yaitu tabel karakteristik jaringan tegangan menengah (gis) dan tabel *user*.

physiological and a	git herer hushor e de Centeen pa jareger
In a second seco	State 32 22 22 22 22 22 22 22 22 22 22 22 22

Gambar 8 Tampilan perancangan database

2.2 Diagram Alir Sistem

Untuk memudahkan perancangan, diagram alir proses akan dibagi menjadi dua bagian yaitu diagram alir proses untuk program spasial dan diagram alir proses untuk program non spasial. Gambar berikut adalah diagram alir proses untuk program spasial.

Gambar 9 Diagram alir proses program spasial

Data entri SIG membuat pemetaan spasial menggunakan ArcView. Data yang dibuat berupa garis, luasan, dan titik. Data yang telah dibuat diberi informasi spasial dan diolah dalam bentuk layer dan file map yang dihubungkan dengan basisdata non spasial. Hasil dari data map, dibuat Sistem Informasi Geografis menggunakan Pmapper.

Untuk diagram alir untuk program data non spasial.

Gambar 10 Diagram Alir Program Non Spasial

Pada gambar di atas dapat dilihat bila data karakteristik di inputkan dan dihitung. Hasil perhitungan tersebut baru dimasukkan pada database. Lalu baru di tampilkan pada laporan jaringan. Sistem dibuat hanya melakukan perintah edit data dan menampilkan data-data hasil perhitungan tersebut. Diagram alir kerja sistem ditunjukkan pada gambar 11.

Gambar 11 Diagram Alir Kerja Sistem

Dari gambar 3.10 dapat dilihat apabila kita ingin mengedit data karakteristik jaringan, maka proses yang harus dilakukan pertama kali adalah proses login. Proses login dilakukan untuk masuk ke dalam sistem, setelah berhasil login baru kita dapat melakukan perintah edit. Setelah meng-dit data yang dilakukan kemudian dilakukan proses penghitungan. Setelah itu baru hasil perhitungan di inputkan ke database yang kemudian ditampilkan pada laporan jaringan.

Selain ditampilkan pada laporan jaringan, hasil perhitungan data karakteristik tersebut juga disajikan pada peta. Yang ditampilkan pada peta meliputi data aset dan data perhitungan karakteristik jaringan.

3. Hasil dan Analisa

3.1 Implementasi Hitungan dalam Program

Perhitungan Karakteristik Jaringan Tegangan Menengah dengan menggunakan Sistem Informasi Geografis dilakukan malalui beberapa tahap, yaitu dengan memasukkan dulu data-data karakteristik jaringan tegangan menengah kemudian baru menghitung karakteristik jaringan. Setelah proses perhitungan selesai baru dimasukkan pada database dan ditampilkan pada laporan jaringan.

Untuk meng-edit data karakteristik jaringan dapat dilakukan dengan menekan tombol edit pada kolom aksi yang terdapat pada laporan jaringan. Setelah meng-edit data yang ingin diganti baru, hal yang harus dilakukan adalah menekan tombol perhitungan sehingga data yang di edit dapat dihitung dan diperbaharui. Kemudian baru ditampilkan pada laporan jaringan. Berikut ini bberapa penjelasan kode program

```
$daya_va=($p_info['daya']*1000);
$daya_pakai_va=$daya_va * 0.7;
$daya_pakai_sudut=acos($cos_phi)*180/pi()*-1;
```

Kode program di atas adalah untuk menghitung daya dengan menggunakan rumus:

$S_{va} = S_{kva} \times 1000$	(1)
$S_{sudut} = arc\cos\theta$	(2)
dengan	
S_{va} = Daya dalam VA	
S_{kva} = Daya dalam kVA	
<pre>\$z_ohm=\$z*\$p_info['panjang'];</pre>	
<pre>\$z_sudut=\$z_sudut_reff;</pre>	
<pre>\$v_volt=\$p_info['v_volt'];</pre>	
\$v sudut=0;	

Kode program di atas adalah untuk menghitung impedansi dengan menggunakan rumus:

$$Z_{ohm/km} = \sqrt{r^2 + x^2}$$
(3)

$$Z_{ohm} = Z_{ohm/km} \cdot p$$
(4)

$$Z_{sudut} = arc \tan \frac{x}{r}$$
(5)

```
dengan
        = Impedansi (\Omega)
Zohm
        = Impedansi (\Omega/km)
Z<sub>ohm/km</sub>
        = Panjang jaringan (km)
р
  $p depan=get point info(trim($rule tegangan[0]
  ));
  $p belakang=get point info(trim($rule tegangan
  [1]));
  $v real=$p depan['v real']+$p belakang['drop r
  eal'];
  $v_imajiner=$p_depan['v_imajiner']+$p_belakang
  ['drop imajiner'];
  $v volt=sqrt(pow($v real,2)+pow($v imajiner,
  2)\overline{)};
  $v_sudut=atan($v_imajiner/$v_real)*180/pi();
```

Kode program di atas adalah untuk menghitung tegangan dengan menggunakan rumus:

V _{sebelum}	$= v_{sesuda h} + v a$	(6)
dengan		
V _{sebelum}	= Tegangan titik	sebelumnya (Volt)
V _{sesudah}	= Tegangan titik	sesudahnya (Volt)
Vd	= Jatuh Teganga	n (Volt)

\$i_ampere=\$daya_pakai_va/sqrt(3)*\$v_volt; \$i_sudut=\$daya_pakai_sudut-\$v_sudut;

Kode program di atas adalah untuk menghitung arus dengan menggunakan rumus:

 $I = \frac{S}{\sqrt{3} \times V}$ dengan I = Arus (Ampere) S = Daya (VA) V = Tegangan (Volt)(7)

\$drop_volt=\$i_ampere * \$z_ohm; \$drop_sudut=\$i_sudut + \$z_sudut; \$drop_real=\$drop_ohm*cos(\$drop_sudut*pi()/180); \$drop_imajiner=\$drop_ohm*sin(\$drop_sudut*pi()/ 180);

Kode program di atas adalah untuk menghitung jatuh tegangan dengan menggunakan rumus:

Vd = I x Z(8) dengan Vd = Jatuh tegangan (Volt) I = Arus (Ampere) Z = Impedansi (Ω) $\frac{rugi_daya=3}{(\$r \$row['panjang'])};$ (8) $pow(\$i_ampere, 2)$

Kode program di atas adalah untuk menghitung rugi daya dengan menggunakan rumus:

$P = 3x I^2 x R$		(9)
dengan		
Р	= Rugi daya (Watt)	
Ι	= Arus (Ampere)	
R	= Resistansi (Ω)	

Berikut gambar single line diagram jaringan tegangan menengah penyulang srondol5 yang dihitung.

Gambar 12 Single Line Diagram Jaringan Tegangan Menengah Srondol 5

3.2 Pengujian Masukkan3.2.1 Login

Login dibutuhkan untuk mengakses sistem. Fungsi login adalah untuk melakukan proses autentifikasi apakah pengguna telah terdaftar dalam sistem. Autentifikasi sangat penting bagi sistem untuk menghindari terjadinya penyalahgunaan penggunaan sistem yang dilakukan oleh pengguna di luar sistem. Form login ditunjukkan pada gambar 13.

Perfebungen Karakterialis Janngan Tagangan Menangah Berbasis Web dar	ngan Presentasi SBS
Ball 100 Part Look Mark	

Pengguna diminta memasukkan Username dan Password pada form yang telah disediakan. Sistem mendeteksi masukkan dan melakukan autentifikasi dengan basisdata. Bila masukkan salah maka akan kembali pada form login.

3.2.2 Home

Apabila data masukkan Username dan Password benar maka menampilkan menu. Pada halaman Home berisi Laporan Jaringan, Ganti Sandi, Logout. Menu-menu tersebut digunakan untuk mengolah data Jaringan Tegangan Menengah. Tampilan beranda ditunjukkan pada gambar 14.

Gambar 14 Tampilan Beranda

Capital Antiger | Supress and Statebook 201 | 104 | 100 | 100 | 10

Dari gambar di atas dapat dilihat pada tampilan beranda terdapat menu-menu yang sudah tersedia dan dapat dipilih. Menu tersebut meliputi Home, Laporan Jaringan, Lihat Peta, Ganti Sandi, dan Logout. Tampilan beranda akan muncul apabila username dan password yang dimasukkan sudah benar.

3.2.3 Laporan Jaringan

Aplikasi laporan jaringan digunakan untuk menampilkan data-data jaringan tegangan menengah yang telah diinputkan dan dihitung. Tampilan aplikasi laporan jaringan dapat dilihat pada gambar 15.

Gambar 15 Tampilan Laporan Jaringan

Bila ada kesalahan atau ingin menggati data dapat mengubahnya dengan menekan tombol edit yang ada pada kolom aksi di menu laporan jaringan. Kemudian menekan tombol menu perhitungan, setelah itu baru masuk lagi ke menu laporan jaringan. Secara otomatis data pada menu laporan jaringan sudah berubah.

3.2.4 Edit Tegangan Ujung (K20)

Aplikasi ini digunakan untuk menentukan besarnya tegangan referensi di K20. Masukan tegangan dalam bentuk kV. Tampilan aplikasi laporan jaringan dapat dilihat pada gambar 16.

Gambar 16 Tampilan Edit Tegangan Ujung (K20)

Bila ingin mengganti nilai tegangan referensi di K20 dapat dilakukan dengan menekan tombol tegangan yang diinginkan di K20 yang ada di menu utama. Setelah memperbarui nilai tegangan referensi di K20 baru kemudian menekan tombol Perhitungan pada menu untuk menghitung kembali data karakteristik jaringan.

3.2.5 Sistem Informasi Geografis

Peta yang ditampilkan dalam Sistem Informasi Geografis yang dibuat merupakan peta jaringan tegangan menengah Semarang Selatan Srondol 5. Selain itu juga disertai dengan peta administrasi Semarang dan peta jalan agar mempermudah dalam membaca informasi yang disampaikan. Tampilan Sistem Informasi Geografis yang dibuat dapat dilihat pada gambar 17.

Gambar 17 Tampilan Sistem Informasi Geografis

Yang ditampilkan pada titik (*point*) GI adalah ID tegangan (volt), sudut tegangan, arus (ampere), sudut arus, rugi daya dalan persen. Sedangkan yang ditampilkan pada titik (*point*) beban dan titik (*point*) percangan meliputi ID, jenis penghantar, luas penampang konduktor (mm²), panjang jaringan ke titik sebelumnya (km), daya, tegangan (arus), sudut tegangan, arus (ampere), sudut arus, jatuh tegangan (%). Sebelum data-data tersebut ditampilkan pada Sistem Informasi Geografis, data-data sistem Informasi Geografis.

3.3 Analisa

Setelah data karakteristik jaringan dimasukkan ke database kemudian dihitung dan hasil perhitungan tersebut dimasukkan dan disimpan lagi ke database. Setelah itu baru ditampilkan pada laporan jaringan dan di peta. Hal tersebut ditunjukkan pada gambar 18.

Gambar 18 Peta Jaringan Semarang Selatan dan Informasinya

Dari perhitungan data karakteristik jaringan di dapat prosentase nilai jatuh tegangan dan rugi daya sebagai berikut

Tabel 4.1 Hasil perhitungan Jatuh Tegangan

ID	Jatuh Tegangan		
12	(Volt)	Sudut	dalam %
K20	0,08045	35,1578	0,06477
K19	0,08808	35,1576	0,06444
K18	0,02462	35,1574	0,06418
K17			
Cabang 8	0,21083	35,1575	0,06408
K16	0,02670	35,1571	0,06322
K15	0,06623	35,1571	0,06311
K14	0,01526	35,1569	0,06296
K13	0,01370	35,1570	0,06289

K12	0,05912	35,1569	0,06308
Cabang 7	0,30428	35,1570	0,06284
K11	0,05375	35,1565	0,06160
Cabang6	5,42619	35,1564	0,06138
K10	0,03624	35,1563	0,06152
Cabang 5	0.76878	35,1462	0,04235
K9	0.48035	35,1450	0,04528
K8	0.23748	35,1458	0,04332
K7	0,05200	35,1461	0,04256
Cabang 4	3,92023	35,1474	0,03921
K6	0.37819	35,1386	0,02899
Cabang 3	0.21180	35,1389	0,02831
K5	0.11872	35,1387	0.02879
K4	0.11820	35,1387	0.02879
K3	0.04940	35,1385	0.02921
K2	0.38373	35,1386	0.02901
Cabang 2	1.04216	35,1393	0.02744
Cabang 1	4.67923	35,1410	0.02319
K1	0.99392	35,1333	0,00406
GI			

Dari tabel di atas di dapat dilihat bahwa nilai jatuh tegangan yang di dapat sudah sesuai dengan contoh perhitungan pada sub bab 4.3. Pada tabel nilai prosentase jatuh tegangannya untuk titik terjauh (K20) sebesar 0,06477 %. Dari data di atas dapat dilihat bahwa nilai tersebut masih dibawah standard yakni untuk tegangan tidak lebih dari 5,5 %. Sehingga masih dapat dimungkinkan untuk pengembangan beban pada jaringan tersebut.^[17]

Tabel 4	2 Hasil	Perhitungan	Rugi	Daya
---------	---------	-------------	------	------

ID	Rugi Daya	
	(Watt)	dalam %
K20-K19	0.09549	0.000021
K19-K17/Cabang 8	0.10455	0.000023
K18-K17/Cabang 8	0.02922	0.000006
K17		
Cabang 8-K16	1.00100	0.000217
K16-K15	0.03169	0.000007
K15-Cabang 7	0.07861	0.000017
K14-K13	0.00905	0.000002
K13-Cabang 7	0.00813	0.000002
K12-Cabang 7	0.03509	0.00008
Cabang 7-K11	2.70874	0.000587
K11-Cabang 6	0.03190	0.000007
Cabang 6- Cabang 4	54.74413	0.011872
K10-Cabang 6	0.02150	0.000005
Cabang 5-Cabang 4	2.28078	0.000495
K9-K8	0.28502	0.000062
K8-Cabang 5	0.28183	0.000061
K7-Cabang 5	0.06171	0.000013
Cabang 4-Cabang 1	51.17192	0.011097
K6-Cabang 2	0.44873	0.000097
Cabang 3-Cabang 2	0.25130	0.000054

K5-Cabang 3	0.07044	0.000015
K4-Cabang 3	0.07013	0.000015
K3-K2	0.02931	0.000006
K2-Cabang 2	0.45532	0.000099
Cabang 2-Cabang 1	4.32793	0.000939
Cabang 1-K1	80.50071	0.017457
K1-GI	1.17904	0.000256
GI		0.043440

Dari tabel di atas di dapat nilai nilai total prosentase rugi daya/ susut energinya pada GI sebesar 0,043440 %. Dari data di atas dapat dilihat bahwa nilai tersebut masih dibawah standard yakni untuk susut energi tidak lebih dari 3,77 %. Sehingga masih dapat dimungkinkan untuk pengembangan beban pada jaringan tersebut.^[17]

Apabila ada penambahan beban (pelanggan) maka dapat dilakukan dengan melakukan simulasi pada program ini. Simulasi dilakukan dengan cara mengganti atau merubah beban, contohnya bila menginginkan penambahan beban pada titik K1 yang awalnya 50 kVA dirubah menjadi 150 kVA, secara otomatis program akan menghitung dan mendapat nilai tegangan pada GI 20014.58824 Volt dan arusnya 17.66846 Ampere. Dengan prosentase jatuh tegangannya 0.07289 % dan susut energinya 0.040287 %. Bila penambahan beban pada titik K5 yang awalnya 25 kVA dirubah menjadi 75 kVA maka akan di dapat nilai tegangan pada GI 20013.22596 Volt dan arusnya 16.65997 Ampere. Dengan prosentase jatuh tegangannya 0.06609 % dan susut energinya 0.043992 %. Dan bila penambahan beban pada titik K20 yang awalnya 50 kVA dirubah menjadi 100 kVA maka adakan di dapat nilai tegangan pada GI 20014.18146 Volt dan arusnya 16.65918 Ampere. Dengan prosentase jatuh tegangannya 0.07086 % dan susut energinya 0.048234%. Nilai-nilai tersebut masih memenuhi standar untuk penambahan beban.

Untuk nilai tegangan dan arus GI Srondol 5 saat ini pada kenyataannya adalah tegangan 21,2kV, arus 70 Ampere untuk siang hari dan 140 Ampere untuk malam hari. Pada program perhitungan nilainya jauh dibawah nilai pada kenyaatannya karena data yang digunakan pada program perhitungan adalah data berdasarkan sistem informasi geografis proyek PDPJ Teknik Elektro Undip dan PLN.

Dengan meng-edit tegangan pada titik ujung terjauh (K20), secara otomatis dapat menghitung data karakteristik di semua titik beban termasuk juga tegangan pada GI. Jadi apabila ingin mengatur tegangan GI sesuai yang diinginkan dapat dilakukan dengan cara mengubah tegangan pada titik tejauh sehingga dengan begitu dapat diperoleh tegangan GI yang diinginkan, contohnya apabila tegangan titik K20 diubah dari 20kV menjadi 19kV, maka secara otomatis akan didapatkan tegangan GI sebesar 19,013.64427 Volt. Sehingga dengan demikian

dapat dengan mempermudah pengguna mengetahui operasi jaringan.

4. Kesimpulan

Dengan menggunakan Sistem Informasi Geografis (GIS) dapat menampilkan informasi data aset, hasil perhitungan karakteristik jaringan tegangan menengah serta mengetahui lokasi beban pada jaringan tegangan menengan Srondol 5. Berdasarkan perhitungan data karakteristik dapat dilihat bila masih dimungkinkan untuk dilakukan pengembangan beban. Apabila memasukkan tegangan yang diinginkan pada titik tejauh (K20) maka secara otomatis dapat mengitung tegangan pada GI sehingga lebih mudah untuk mengetahui operasi jaringan.

Program ini masih dimungkinkan untuk perhitungan karakteristik jaringan dan menampilkan informasi lain, pengembangan jaringan dengan memperhatikan letak trafo, pengembangan jaringan dengan memperhatikan fasanya, serta dapat dikembangkan untuk perhitungan karakteristik jaringan dengan menggunakan GI sebagai titik referensi.

Referensi

- Arismunandar. Dr. A, Dr. S. Kuwaha, Buku Pegangan Teknik Tenaga Listrik Julid II, PT Pradnya Paramita, Jakarta, 1993.
- [2]. Asy'ari, Hasim et al, Perbaikan Tegangan untuk Konsumen, Jurnal Teknik Elektro dan Komputer Emitor Vol 3, No.2. September 2003
- [3]. Cahyanto. Restu Dwi, Studi Perbaikan Kualitas Tegangan dan Rugi-rugi Daya pada Penyulang Pupur dan Bedak Menggunakan Bank Kapasitor, Trafo Pengubah Tap dan Penggantian Kabel Penyulang, Laporan Tugas Skripsi Teknik Elektro Universitas Indonesia, 2008.
- [4]. Gonen Turan, *Electric Power Distribution System Engineering*, McGraw-Hill, United States of America, 1986.
- [5]. Hutauruk. TS, *Transmisi Daya Listrik, Erlangga*, Jakarta, 1985.
- [6]. Indelarko Hendi, Riyanto, Prilnali Eka Putra, Pengembangan Sistem Informasi Geografis Berbasis Desktop dan Web, Gava Media, Yogyakarta, 2009.
- [7]. Lilik Jamilatul Awalin dan Bangun Muljo Sukojo, Pembuatan dan Analisis Sistem Informasi Geografis Distribusi Jaringan Listrik (Studi Kasus: Surabaya Industrial Estate Rungkut di Surabaya, Makara. Teknologi. Vol.7. No. 1. April 2003.
- [8]. Madcoms, Membuat Aplikasi Database Karyawan Online Berbasis Web dengan PHP dan MySQL. Andi Offset, Yogyakarta, 2005.
- [9]. Madcoms, Menguasai XHTML, CSS, PHP, & MySQL melalui DREAMWEAVER, Andi Offset, Yogyakarta, 2009.
- [10]. M. Iqbal Hasan, In: Uppal. Electrical Power, 8th Ed, Khanna Publishers, New Delhi, 1980.
- [11]. Nuryadin, Ruslan.Ir, Panduan Menggunakan MapServer. Informatika, Bandung, 2005.

- [12]. Pabla. AS, Ir. Abdul Hadi, Sistem Distribusi Daya Listrik, Erlangga, Jakarta, 1991.
- [13]. Prahasta, Eddy, Membangun Aplikasi Web-based GIS dengan MapServer, Informatika, Bandung, 2007.
- [14]. Short, Tom, *Electric Power Distribution Equipment and System*, Taylor & Francis Group, New York, 2006.
- [15]. Sulasno. Ir, Teknik dan Sistem Distribusi Tenaga Listrik, Badan Penerbit Universitas Diponegoro, Semarang, 2004.
- [16]. Suswanto. Daman, "Klasifikasi Jaringan Distribusi." Web. 25 November 2010. <u>http://daman48.wordpress.com/</u>
- [17]. Tim Masterplan, Pembuatan Masterplan Sistem Distribusi 20kV APJ Tegal, Laporan Akhir, Universitas Diponegoro -PLN (Persero) Distribusi Jateng DIY, 2011